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Abstract—Fuzzing is one of the most effective technique to
identify potential software vulnerabilities. Most of the fuzzers aim
to improve the code coverage, and there is lack of directedness
(e.g., fuzz the specified path in a software). In this paper,
we proposed a deep learning (DL) guided directed fuzzing
for software vulnerability detection, named DeFuzz. DeFuzz
includes two main schemes: (1) we employ a pre-trained DL
prediction model to identify the potentially vulnerable functions
and the locations (i.e., vulnerable addresses). Precisely, we employ
Bidirectional-LSTM (BiLSTM) to identify attention words, and
the vulnerabilities are associated with these attention words in
functions. (2) then we employ directly fuzzing to fuzz the potential
vulnerabilities by generating inputs that tend to arrive the
predicted locations. To evaluate the effectiveness and practical of
the proposed DeFuzz technique, we have conducted experiments
on real-world data sets. Experimental results show that our
DeFuzz can discover coverage more and faster than AFL.
Moreover, DeFuzz exposes 43 more bugs than AFL on real-world
applications.

Index Terms—fuzz testing, deep learning, software security,
vulnerability, static analysis, dynamic analysis

I. INTRODUCTION

Computer software is a crucial part of the modern world.
The software makes the world become smart than before.
However, cyber threats attributed to vulnerabilities in software
are becoming a serious security problem [1]. For example, it
is estimated that it will cost $6 trillion to combat cybercrime
by 2021, which is double of the cost in 2015. Therefore, the
vulnerabilities in the software should be ideally identified and
fixed before the software get deployed.

Many algorithms have been developed for software vulner-
ability detection [2], [3], [4]. Among these techniques, fuzzing
is one of the most effective approach to identify potential
software vulnerabilities [5]. However, fuzzing has the problem
of time-consuming because it identify bugs using randomly
generated inputs. Fuzz testing usually hard to arrive all the
code coverage given a real-world scenario. For example, it
is very hard to generate inputs for some sanity checks with

the increasing size of the real-world programs [6]. Moreover,
previous study showed that vulnerable functions usually come
from a small part of the whole program. To address these
problems, directed greybox fuzzing, which uses the inputs that
are generated with the objective of reaching specific locations,
has been developed. Nevertheless, greybox fuzzing usually
has the problem that it cannot be effectively directed [7].
Therefore, there is still necessary to research into the directed
fuzzing, which can fuzz the specific targeted locations with
less of resources.

In this work, we take the advantages of deep learning [8],
and developed a deep learning directed fuzzing for bugs iden-
tification. Deep learning has shown successful in software vul-
nerability detection [9], [10], specifically in learning the high-
level representations for both vulnerable and not-vulnerable
programming features. The high-level representations usually
contains richer useful information than the generic hand-
crafted features [11]. However, deep learning-based techniques
usually has high false positives (e.g., more than 20%) [11], [9],
[10]. In this work, we employ deep learning to identify the
potential vulnerable functions and the vulnerability locations.
Then we run the directed fuzzing to fuzz the vulnerable
locations to reduce the false positive rate.

Specifically, given a software program, we first extract
functions from the program, and then we extract Abstract
Syntax Trees (ASTs) for each function. The ASTs we collected
will be used as the training samples. The training samples
are from LibTIFF, LibPNG, and FFmpeg, which are three
open-source projects. We label the vulnerable functions by
following the Common Vulnerability and Exposures and the
National Vulnerability Database. The assumption is that if
there are at least one vulnerability in the function, then the
function will be labeled as vulnerable, otherwise, it will be
labeled as not vulnerable. Then, we train an attention-based
deep learning model using the ground truth. The pre-trained
model will be applied to the test cases (i.e., a piece of program
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or a software program). The outputs will be the locations of
the potential vulnerabilities (the vulnerabilities are associated
with these attention words in functions). Afterwards, we fuzz
the vulnerable locations using directed fuzzing [12]. We call
this as deep learning guided directed fuzzing, namely DeFuzz.
The main contributions of this work are as follows:

• We propose to employ attention-based deep learning to
highlight code keyword, which will be used to identify
the penitential vulnerable locations (i.e., vulnerable ad-
dresses) for real-world security problems.

• We propose to use deep learning to guide the directed
fuzzing. When deep learning can successfully predict
the exact or the neighbours of vulnerability locations,
directed fuzzing is efficient to detect vulnerabilities.

• We conducted experiments on real-world scenarios. Ex-
perimental results show that the proposed DeFuzz can
discover more coverages and faster than AFL. For exam-
ple, DeFuzz exposes 43 more bugs than AFL on real-
world applications.

II. RELATED WORK

In this section, we briefly review of the related work
from two perspectives: machine learning-based vulnerability
detection and fuzz testing for software vulnerability discovery.
For more information, please refer to [2], [3], [4], [13], [14].

A. Machine Learning based vulnerability detection

Machine learning has been widely used for software vulner-
ability detection. Morrison et al. [36] investigate the machine
learning techniques for software vulnerability identification,
their study show that machine learning techniques is useful
in vulnerability detection. However, the classification perfor-
mance based on source code usually performs better than
binary code level.

Machine learning techniques for software vulnerability de-
tection can be divided into two stages: feature learning, and
model building. Feature learning is a case by case process.
For example, Shar and Tan [15] propose to consider static
code attributes for model building to predict specific pro-
gram statements for SQL injection and cross site scripting.
Yamaguchi et al. [16] propose to use clustering algorithms
on code property graph based on C source code for taint-
style vulnerability discovery. Alves et al. [17] have done an
experimental study over machine learning techniques, their
experimental results show that random forest usually has a
better performance. DisovRE [18] uses control flow graph for
function similarity match to identify potential bugs given a
piece of software. VDiscover [19] employs lightweight static
and dynamic features to identify potential vulnerabilities given
a test case. SemHunt [20] proposes a scheme to predict
vulnerable functions and their pairs of patched and unpatched
functions using the binary executable programs. Calzavara
et al. [21] propose to consider HTTP requests as features
and employ supervised machine learning to detect Cross-Site
Request Forgery vulnerabilities.

Meanwhile, deep learning has been widely accepted and
applied for software vulnerability detection. This is because
deep learning has the capability of learning high-level feature
representations given a program. Lin et al. [22] propose
to employ LSTM for function-level vulnerability detection
based on ASTs. Li et al. [9] consider BiLSTM using code
gadgets as features for software vulnerability detection. Liu
et al. [1] realize that there is class imbalance problem [23]
in software vulnerability detection, and propose a fuzzy-
based oversampling algorithm using ASTs for vulnerability
detection. Furthermore, a deep learning based cross domain
software detection has been developed [24], this study em-
ploys metric transfer learning framework to minimize the
distribution differences between the source domain and target
domain. Liu et al. [10] propose to employ attention-based deep
learning using binary instruction as features for binary-level
vulnerability detection. For more information about software
vulnerability detection using machine, please refer to [25].

B. Directed Fuzzing

Coverage-guided fuzzing is a widely-used fuzzing solution
due to its effectiveness [26]–[35]. Coverage-guided fuzzing
aims to cover as much coverage as possible. The assumption
is that with more coverage discovered, it has higher chance
to expose bugs. Driller [34] uses symbolic execution to solve
path constrains, which is the major road rock to discover more
coverage, for fuzzing. CollAFL [35] improves the coverage
via resolving edge collision. Angora [36] and Matryoshka
[29] regard a single path constraint as a black-box function,
and use gradient descent to bypass the path constraint. As
some path constraints compare variables with constant val-
ues, REDQUEEN [31] uses the constant values to bypass
constraints. The mutation of the entire input for a program
requires much time. Therefore, GREYONE [27] first finds the
relation between input bytes and path constraints, and then
only mutates the related bytes. This solution largely reduce
the searching space of input. As the random nature of fuzzing,
the execution speed is critical for fuzzing. Full-speed fuzzing
[28] improves the execution speed of fuzzing via only tracing
execution that discovers new coverage. Although coverage-
guided fuzzing has achieved a great success, it has problems to
detect vulnerabilities efficiently. The reason is that, coverage-
guided fuzzing spends almost the time for each path, wasting
time for the non-vulnerability paths.

To improve the efficiency of coverage-guided fuzzing, di-
rected fuzzing aims to cover the potential bug locations,
which is more effective than coverage-guided fuzzing. Di-
rected fuzzing is one of the most promising fuzzing solutions
to detect vulnerabilities. Directed fuzzing instruments some
potential bug locations and guides fuzzing to reach the lo-
cations. AFLGo [12] utilises the commit information from
Github to set bug locations. Then, it assigns more mutation
time for the execution paths that are closer to these locations.
SAVIOR [37] sets the potential bug locations using Undefined
Behavior Sanitizer (UBSan). UBSan can detect variables that
are used before definition. Besides UBSan, other sanitizers can
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Fig. 1. Framework of the proposed DeFuzz. There are three phases: prediction model training, potential vulnerable location identification, and directed fuzzing.

375 case PUSH_CONSTANT16: /* CONSTANT16 */

376 if (act->p.Constant16 > poolcounter)

377 {

378  SWF_warn("WARNING: retrieving constants not present in the pool.\n");

379  break;

380 }

381 t=malloc(strlenext(pool[act->p.Constant16])+3); /* 2 '\"'s and a NULL */

382 strcpy(t,"'");

383 strcatext(t,pool[act->p.Constant16]);

384 strcat(t,"'");

385 return t;

Fig. 2. Location of potential vulnerability identified from a piece of code of
(or subroutine of) getString() function from decompile.c file.

also be used to set the potential bug locations. ParmeSan [38]
regards the sanitization instrumentation as the target locations
and guides fuzzing to these insteresting basic blocks. To
discover memory corruption vulnerabilities, TortoiseFuzz [39]
statically analyses locations of sensitive memory operations,
and then guides fuzzing to these memory related locations.
Memory corruption is a common vulnerability among all kinds
of vulnerabilities. However, in this paper, we utilise the results
from deep learning to set the potential bug locations.

III. PROPOSED DEFUZZ

In this section, we discuss the main idea of DeFuzz.
DeFuzz is a deep learning guided directed fuzzing for software
vulnerability identification. Fig.1 is the framework of the
proposed DeFuzz. As shown in Fig.1, one can see there are
three phases in the proposed scheme: 1) Prediction model
training; 2) potential vulnerable location identification; 3) fuzz
the potential vulnerable locations using directed fuzzing.

In the first phases, we train the attention-based deep learning
model based on the ground truth we collected. This model is
the pre-trained prediction model as we can see from Fig.1. In
this study, the ground truth data samples are C/C++ functions
1 with labels which means the samples will be labeled as either
vulnerable or not vulnerable [24], [22]. The data samples are

1Function means a group of statements that together perform a task.

TABLE I
CRASHING TRACE OF LISTACTION D. FUZZING HAS TO GENERATE AN

INPUT THAT EXERCISES ALL THE TEN LISTED FUNCTIONS.

Functions in a Crashing Trace File & Line

main main.c:354
readMovie main.c:281
outputBlock outputtxt.c:2933
outputSWF DOACTION outputtxt.c:1620
decompile5Action compile.c:3517
decompileActions decompile.c:3494
decompileAction decompile.c:3413
decompileSingleArgBuiltInFunctionCall decompile.c:2994
newVar N decompile.c:725
getString decompile.c:381

from three open-source projects including FFmpeg, LibPNG,
and LibTIFF 2. We collect the sources from Github, and then
we manually labeled 417 vulnerable functions and 6,860 not-
vulnerable functions. The assumption is that if there is at least
one vulnerability identified in the function, then the function
will be labelled as vulnerable, otherwise, it will be labeled
as not vulnerable. Then, we extract ASTs representations for
the program code at function level (a detailed description of
ASTs can be found in [1], [11]). The ASTs are tokenized
into AST sequences before they are fed to the the attention-
based Bidirectional LSTM (BiLSTM) for feature representa-
tion learning. Finally, the fully connected neural network will
be employed to train the prediction model based on the feature
vector representations.

The second phase is used to identify potential vulnerabilities
given any test cases. The inputs are C or C++ programs.
The outputs are the vulnerable locations at function level
(i.e., the test cases are programs at function level, the results
will be the locations of potential vulnerabilities regarding
each function). It is worth to note that the location of the
vulnerabilities is identified by using the attention words pro-

2Download from: https://github.com/cybercodeintelligence/CyberCI.

https://github.com/cybercodeintelligence/CyberCI.


duced by the attention-based BiLSTM model. We consider
attention-based deep learning to train the prediction model
because the attention words produced by the model can be
helpful for us to identify the location of the vulnerabili-
ties. Fig.2 gives an example, we extracted getString() from
decompile.c file of the libming project as a test case for
the pre-trained model. When we fed this function to our
pre-trained model for testing. The output of the attention
words are: malloc, Constant16, strlenext and pool. Af-
ter we manually check with getString() function. We then
identified the potential vulnerability is from the line 381 of
t = malloc(strlenext(pool[act− > p.decomstant16]) + 3).

In the third phase, we employ the directed fuzzing to
fuzz the vulnerable locations identified in the second phase.
Specifically, we use AFLGo as the directed fuzzing. When
AFLGo gets the potential vulnerability locations, which are
generated by deep learning, AFLGo calculates distance be-
tween the current execution path and the target locations
(Details can be found in [12]). Then, AFLGo assigns mutation
chances based on the distance, i.e., the smaller the distance is,
the more mutation chances the path is assigned. Therefore,
directed fuzzing spends more time on execution paths that
examine target locations, which improves the efficiency of
detecting vulnerabilities. Note that, although we use AFLGo
to demonstrate the efficacy of our DeFuzz, we will use other
directed fuzzers or design our own one in the future. As an
example, Table I shows the bug location in the 381st line of
the file decompile.c in program libming, and the bug is
exposed running application listaction_d. As shown in
Table V (refer to Section IV), deep learning precisely predicts
this bug location, and fuzzing is guided to this bug location.
Starting from the function main(), fuzzing has to generate
an input that exercises another nine functions and trigger the
bug in function getString(). The 381st code line of function
getString() calls malloc(), which causes a segmentation fault.

IV. EXPERIMENTS

We evaluate our DeFuzz on eight real-world open-sourced
programs, which are shown in Table II. The eight target
programs include seven programs from libming [40] library,
which deals with .swf files, and gifsponge from gif,
which manipulates GIF images. The parameters used for the
eight programs are shown in the fifth column of Table II.
These applications are widely used in the real world, and
their security will have a significant impact on the applications
developed based on them. Therefore, we chose them as our
target programs. We compare our DeFuzz to AFL with the
same configure, i.e., the same initial input and timeout. We set
the timeout as 24 hours, i.e., the execution will terminate when
fuzzing runs more than 24 hours. We run the experiments on
the computer with AMD Ryzen Threadripper 2990WX 32-core
Processor 128GB RAM. Each program runs on a single core.
We will evaluate the performance of our DeFuzz in terms of
execution speed, code coverage, and bug discovery.

TABLE II
THE NUMBER OF UNIQUE CRASHES. DEFUZZ DETECTS MORE CRASHES

THAN AFL.

Application Version DeFuzz AFL Parameters
listaction d

commit 50098

10 16

@@

listswf d 162 216
swftocxx 13 0
swftoperl 87 0
swftophp 166 0
swftopython 155 0
swftotcl 165 0
gifsponge commit 72e1f 11 0

Fig. 3. Relative Execution Speed. The relative execution speed is the
execution speed of each fuzzer compared to the average execution speed.
A higher relative execution speed indicates more test cases being examined
in the same time. The execution speed of DeFuzz is close to AFL’s.

A. Excution Speed

The execution speed has a significant influence on fuzzing
due to the random nature of fuzzing. With a higher execution
speed, fuzzing saves time to run more executions. Fig.3 shows
the relative execution speed of each application. For each
fuzzer, we first calculate the average execution speed of each
application. Then, the relative execution speed is the value that
average execution speed of an individual fuzzer is divided by
the average execution speed of both fuzzers.

As shown in Fig.3, the relative execution speed of AFL
is faster than DeFuzz on two applications, Listaction_d

TABLE III
THE NUMBER OF REAL-WORLD BUGS AND TYPES. DEFUZZ DISCOVERS

MORE BUGS THAN AFL.

Applications DeFuzz AFL

Detected Bugs per Project

listaction d 5 6
listswf d 12 14
swftocxx 6 0
swftoperl 8 0
swftophp 10 0
swftopython 8 0
swftotcl 12 0
giflib 2 0

Detected bugs Type

out-of-memory
√ √

double free
√

×

Total 63 20
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Fig. 4. The number of paths. On average, DeFuzz discovers more paths than AFL.

TABLE IV
THE TIME OF DETECTING FIRST CRASHES BY AFL. OVER 24 HOURS,

AFL DETECTS THE FIRST CRASHES.

Application Time (h)
swftocxx 26.8
swftoperl 25.7
swftophp 27.4
swftopython 25.5
swftotcl 26.8

and Listswf_d. On the other hand, DeFuzz runs programs
close or faster than AFL on ther other six applications. On
the application gifsponge, although the execution speeds
of the two fuzzers are close, AFL discovers only one path
during the experiments and exposes zero crashes. On ther other
hand, DeFuzz discovers much more crashes than AFL. On
average, the execution speed of AFL and DeFuzz is close to
each other, and DeFuzz is slightly faster than AFL. Excluding
swftophp, DeFuzz has a relative execution speed 4% higher
than AFL.

For coverage-guided fuzzing, such as AFL, it aims to
discover as much coverage as possible. The assumption is that
with a higher coverage, it has a higher chance to expose vul-
nerabilities. However, this might not always be true. Therefore,
directed fuzzing, such as AFLGo, prefers to explore paths that
are closer to the potential vulnerability locations. As DeFuzz is
a directed fuzzer, it sets potential vulnerable locations utilising
Deep Learning.

Fig.4 shows that DeFuzz discovers more coverage than
AFL on six applications except for listaciton_d and
listswf_d. Although DeFuzz discovers less coverage than
AFL on applications listaciton_d and listswf_d,
DeFuzz discovers more crashes than AFL, as shown in Fig.5.
Excluding gifsponge, the overall code coverage of DeFuzz

is only 4% more than that of AFL, but DeFuzz detects three
times as many crashes as AFL. Therefore, while DeFuzz is a
directed fuzzing, it still discovers more coverage than AFL.

B. Bug Discovery

In this section, we will evaluate the performance of DeFuzz
in terms of crash discovery and bug discovery. The number of
unique crashes is an important indicator of the effectiveness of
fuzzing. The more crashes are detected, the greater probability
of finding vulnerabilities. TABLE II shows that, within 24
hours, DeFuzz has successfully detected crashes on every
target program. On the other hand, AFL did not detected any
crash on the same applications except for listaciton_d
and listswf_d. Therefore, DeFuzz is more effective than
AFL to expose crashes.

We de-duplicated the crashes utilising afl-collect [41],
and then verified bugs manually based on the crash stacks
reproduced by GDB [42]. The number of bugs discovered by
fuzzers is shown in TABLE III. Overall, DeFuzz discovers
much more bugs than AFL on six applications. Meanwhile,
the two fuzzers expose close number of bugs on applications
listaciton_d and listswf_d. Note that we ran each
trial for 24 hours, and AFL cannot expose crashes within
24 hours on six applications. We continued the experiments
for AFL until it exposed crashes on the six applications that
could not expose crashes within 24 hours. Table IV shows the
time that AFL exposes the first crash on five applications. We
could not find crashes on application gifsponge. The bug
locations of each application are shown in TABLE V, where
the file name is the file in which bug happens and the line
number is the corresponding line in the file. The bug locations
predicted by deep learning are also shown in TABLE V.

Comparing the real bug locations with the predicted ones,
TABLE V shows that deep learning has successfully predicted



TABLE V
THE PREDICTED BUG LOCATIONS OF DEEP LEARNING AND THE REAL BUG LOCATIONS. MOST REAL BUG LOCATIONS ARE SUCCESSFULLY PREDICTED

BY DEEP LEARNING.

Predicted bug locations by deep learning Real bug locations
Library Application File Name Line Number File Name Line Number

libming

listaction d

decompile.c 103,370,381,407,440,455,476,477,555,569,583,714,726,762,1597,1690,1715,1932

decompile.c 440,455,370,381,714
listswf d decompile.c 370,440,407,477,455,381,476,1932,714,762,726,103
swftocxx decompile.c 1597,440,370,381,455,477
swftoperl decompile.c 407,440,370,455,381,477,714,1690
swftophp decompile.c 477,370,381,455,440,407,714,762,103,726
swftopython decompile.c 714,103,762,569,583,555,726,583
swftotcl decompile.c 381,440,477,455,370,1597,407,714,726,762,569,1715

gif gifsponge egif lib.c 92,764,802,1144 egif lib.c 771,790
gifsponge.c 44,76,81 gifsponge.c NA
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Fig. 5. The number of crashes over time. DeFuzz exposes crashes faster than AFL.

all the bug locations found by fuzzing on the seven applica-
tions from libming. On the application gifsponge, deep
learning does not predict the accurate bug locations, however,
the real bug locations are close to the predicted ones. For
example, deep learning predicts that the bug locations include
lines 764 and 802 in file egif lib.c while the real bug locations
are the lines 771 and 790. When DeFuzz can successfully
guide fuzzing to the predicted locations, it has a high chance
that the neighbour code lines can also be executed. Therefore,
DeFuzz can discover bugs that are close to the predicted lines.

On the other hand, AFL only detects bugs on two ap-
plications listaciton_d and listswf_d. As shown in
Table III, DeFuzz found 63 bugs while AFL found only 20
bugs. Meanwhile, DeFuzz exposes two types of bugs, i.e.,
out-of-memory and double free. However, AFL only
exposes bugs with the type out-of-memory.

C. Limitations

In order to guide fuzzing to target locations, DeFuzz has to
calculate the distance between the current execution path and
the target locations. However, the calculation of distance takes
much time. Although DeFuzz calculates the distance during

static analysis, which does not affect the execution speed of
target programs, it may have problems when fuzzing on large
programs. Moreover, DeFuzz uses control flow graph (CFG)
to calculate distance. However, it is hard to statically construct
an accurate CFG, which may miss some connections between
two different basic blocks. The missed connections lead to an
inaccurate distance.

Another limitation is that we usually face with the class
imbalance problem with the data-driven cybersecurity. In this
study, the ratio of vulnerable and not vulnerable samples we
collected is about 1:16.5. In this case, the classifiers usually
bias toward the majority class. For example, assume there are
95% of the data samples are from majority class (e.g., not-
vulnerable) while only 5% of the data samples are from the
minority class (vulnerable). If the classifier classify all the data
samples as not-vulnerable, the accuracy will be 95%, however,
this is useless in the real-world security problem because we
want to identify as many vulnerabilities as possible. Therefore,
it is very necessary to address the class imbalance problem
with data-driven cybersecurity problems. In our previous study,
we developed DeepBalance [1] to address the class imbalance
problem, however, there are still much room for improvement.



V. CONCLUSION

In this study, we proposed a DeFuzz, which is a deep
learning guided directed fuzzing for software bugs identi-
fication. The goal is to use deep learning to identify the
potential vulnerable locations, then use directed fuzzing to fuzz
the vulnerable locations to reduce the false positive rate. To
achieve this goal, DeFuzz uses the attention-based BiLSTM
to train a prediction model based on the ground truth data
we collected. The prediction model is used to identify any
potential vulnerabilities given an unknown test case. We then
run AFLgo to fuzz the potential vulnerable locations. We
have demonstrated that DeFuzz outperforms the baselines by
conducing experiments on real-world data.

Although DeFuzz achieves better performance that the base-
line, there still several directions that one can further explore in
the future. For example, deep learning can be utilised to guide
fuzzing other than setting potential target locations. Deep
learning can also be used to optimise the mutation scheme of
fuzzing, such as how to mutate an input or the times an input
to be mutated. Another interesting direction is to address the
class imbalance problem when using the deep learning-based
techniques.
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[12] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pages 2329–2344. ACM, 2017.

[13] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecu-
rity, 1(1):6, 2018.

[14] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil
Cha, Manuel Egele, Edward J Schwartz, and Maverick Woo. The art,
science, and engineering of fuzzing: A survey. IEEE Transactions on
Software Engineering, 2019.

[15] Lwin Khin Shar and Hee Beng Kuan Tan. Predicting sql injection
and cross site scripting vulnerabilities through mining input sanitization
patterns. Information and Software Technology, 55(10):1767–1780,
2013.

[16] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck.
Automatic inference of search patterns for taint-style vulnerabilities. In
2015 IEEE Symposium on Security and Privacy, pages 797–812. IEEE,
2015.

[17] Henrique Alves, Baldoino Fonseca, and Nuno Antunes. Experimenting
machine learning techniques to predict vulnerabilities. In 2016 Seventh
Latin-American Symposium on Dependable Computing (LADC), pages
151–156. IEEE, 2016.

[18] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla.
discovre: Efficient cross-architecture identification of bugs in binary
code. In NDSS, 2016.

[19] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat,
Josselin Feist, and Laurent Mounier. Toward large-scale vulnerability
discovery using machine learning. In Proceedings of the Sixth ACM
Conference on Data and Application Security and Privacy, pages 85–
96, 2016.

[20] Yao Li, Weiyang Xu, Yong Tang, Xianya Mi, and Baosheng Wang.
Semhunt: Identifying vulnerability type with double validation in binary
code. In SEKE, pages 491–494, 2017.

[21] Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise Rabitti, and
Gabriele Tolomei. Mitch: A machine learning approach to the black-box
detection of csrf vulnerabilities. In 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 528–543. IEEE, 2019.

[22] Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Olivier De Vel, Paul Mon-
tague, and Yang Xiang. Software vulnerability discovery via learning
multi-domain knowledge bases. IEEE Transactions on Dependable and
Secure Computing, 2019.

[23] Shigang Liu, Jun Zhang, Yang Xiang, and Wanlei Zhou. Fuzzy-based
information decomposition for incomplete and imbalanced data learning.
IEEE Transactions on Fuzzy Systems, 25(6):1476–1490, 2017.

[24] Shigang Liu, Guanjun Lin, Lizhen Qu, Jun Zhang, Olivier De Vel,
Paul Montague, and Yang Xiang. Cd-vuld: Cross-domain vulnerability
discovery based on deep domain adaptation. IEEE Transactions on
Dependable and Secure Computing, 2020.

[25] Hongfa Xue, Shaowen Sun, Guru Venkataramani, and Tian Lan. Ma-
chine learning-based analysis of program binaries: A comprehensive
study. IEEE Access, 7:65889–65912, 2019.

[26] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz. Ijon: Exploring
deep state spaces via fuzzing. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 874–889, Los Alamitos, CA, USA, may 2020.
IEEE Computer Society.

[27] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin,
Dong Wu, and Zuoning Chen. Greyone: Data flow sensitive fuzzing. In
USENIX 2020, 2020.

[28] Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing fuzzing
overhead through coverage-guided tracing. In 2019 IEEE Symposium
on Security and Privacy (SP), 2018.

[29] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka: fuzzing deeply
nested branches. In CCS, 2019.

[30] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, and
Yu Song. MOPT: Optimized mutation scheduling for fuzzers. In 28th
USENIX Security Symposium (USENIX Security 19), Santa Clara, CA,
2019. USENIX Association.

[31] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik,
and Thorsten Holz. Redqueen: Fuzzing with input-to-state correspon-



dence. In The Network and Distributed System Security Symposium
(NDSS), San Diego, CA, 2019.

[32] X. Zhu, X. Feng, X. Meng, S. Wen, S. Camtepe, Y. Xiang, and K. Ren.
CSI-Fuzz: Full-speed edge tracing using coverage sensitive instrumen-
tation. IEEE Transactions on Dependable and Secure Computing, 2020.

[33] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray,
and Suman Jana. Neuzz: Efficient fuzzing with neural program learning.
In 2019 IEEE Symposium on Security and Privacy (SP), 2019.

[34] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, volume 16, pages 1–16, 2016.

[35] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. Collafl: Path sensitive fuzzing. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 679–696. IEEE, 2018.

[36] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled
search. In 2018 IEEE Symposium on Security and Privacy (SP), 2018.

[37] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong
Zhang, Long Lu, et al. Savior: Towards bug-driven hybrid testing. In
2020 IEEE Symposium on Security and Privacy (SP), Los Alamitos,
CA, USA, may 2020. IEEE Computer Society.
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