
Cache-in-the-Middle (CITM) Attacks : Manipulating Sensitive
Data in Isolated Execution Environments

Jie Wang
1,2,3

, Kun Sun
2
, Lingguang Lei

1,3∗
, Shengye Wan

2,4
, Yuewu Wang

1,3
, and Jiwu Jing

5

1
SKLOIS, Institute of Information Engineering, CAS, China

2
Department of Information Sciences and Technology, CSIS, George Mason University

3
School of Cyber Security, University of Chinese Academy of Sciences, China

4
Department of Computer Science, College of William and Mary

5
School of Computer Science and Technology, University of Chinese Academy of Sciences

{wangjie, leilingguang, wangyuewu}iie.ac.cn, ksun3@gmu.edu, swan@email.wm.edu, jwjing@ucas.ac.cn}

ABSTRACT
The traditional usage of ARM TrustZone has difficulty on solving

the conflicts between the manufacturers that want to minimize the

trusted computing base by constraining the installation of third-

party applications in the secure world and the third-party applica-

tion developers who prefer to have the freedom of installing their

applications into the secure world. To address this issue, researchers

propose to create Isolated Execution Environments (called IEEs) in

the normal world to protect the security-sensitive applications. In

this paper, we perform a systematic study on the IEE data protection

models and the ARM cache attributes, and discover three cache-

based attacks called CITM that can be leveraged to manipulate the

sensitive data protected in IEEs. Specifically, due to the inefficient

and incoherent security measures on the cache that maps to the

IEE memory (i.e., memory designated for IEEs), attackers in the

normal world may compromise the security of IEE data by manipu-

lating the IEE memory during concurrent execution, bypassing the

security measures enforced when a security-sensitive application

is suspended or finished, or misusing the incomplete security mea-

sures during IEE’s context switching processes. We conduct case

studies of CITM attacks on three well-known IEE systems including

SANCTUARY, Ginseng, and TrustICE to illustrate the feasibility to

exploit them on real hardware testbeds. Finally, we analyze the root

causes of the CITM attacks and propose a countermeasure to defeat

them. The experimental results show that our defense scheme has

a small overhead.

CCS CONCEPTS
• Security and privacy → Systems security; • Computer sys-
tems organization → Architectures.

KEYWORDS
TrustZone; Isolated Execution Environment; Cache Manipulation

*Lingguang Lei is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00

https://doi.org/10.1145/3372297.3417886

ACM Reference Format:
JieWang

1,2,3
, Kun Sun

2
, Lingguang Lei

1,3∗
, ShengyeWan

2,4
, YuewuWang

1,3
,

and Jiwu Jing
5
. 2020. Cache-in-the-Middle (CITM) Attacks : Manipulating

Sensitive Data in Isolated Execution Environments. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/3372297.3417886

1 INTRODUCTION
ARMTrustZone has become one popular security technology to pro-

tect security-sensitive applications in an isolated trusted execution

environment [1]. Many manufacturers enable the TrustZone-based

protection on their commercial mobile devices [2, 26, 29, 35]. As a

hardware-assisted technology, TrustZone divides platform into two

execution environments, namely, the normal world (or non-secure
world) and the secure world, where the normal world is responsible

for running normal applications over an rich OS and the secure

world is preserved to protect security-sensitive code and data.

The traditional usage of TrustZone is to run the security-

sensitive applications and store their sensitive data in the secure

world, as shown in Figure 1(a). Those solutions are usually called

Trusted Execution Environment (TEE) systems, where the security-

sensitive applications are implemented as Trusted Applications
(TAs) running in the secure world (e.g., SAMSUNG KNOX [26],

OP-TEE [48], Qualcomm QSEE [29], and Huawei Secure OS [35]).

The TEE solutions rely on built-in hardware supports to enforce a

secure isolation and defend against attacks from untrusted rich OS.

Untrusted

Rich OS
IEE Monitor

Security-sensitive

Applications

Normal World Secure World

Protected by IEE Monitor Protected by TrustZone

Untrusted Rich OS
Security-sensitive

Applications

Normal World Secure World

(a) Architecture of TEE System

(b) Architecture of IEE System

Figure 1: TEE System vs. IEE System

https://doi.org/10.1145/3372297.3417886
https://doi.org/10.1145/3372297.3417886

Although the traditional TEE systems can ensure a strict isola-

tion and secure protection of the security-sensitive applications

in the secure world, they have difficulty on addressing two con-

flicting requirements from device manufacturers and third-party

security-sensitive application developers. On one side, since the

trusted computing base (TCB) of the TEE systems keeps increasing

along with the number of applications installed in secure world,

the manufacturers are reluctant to open the secure world for freely

installing third-party applications. Instead, they prefer to only in-

stall their own security-sensitive applications that may have gone

thorough a more strict security assessment. On the other side, more

third-party security-sensitive applications expect to be imported

into the secure world for an enhanced security protection, which

is critical to foster an ecosystem for more third-party application

developers to develop their security-sensitive applications for the

TEE systems.

To address the above problem in TEE systems, researchers pro-

pose to create Isolated Execution Environments (called IEEs) in the

normal world [14, 55, 56], as shown in Figure 1(b). The key idea

is to use a trusted reference monitor (i.e., the IEE monitor) in the

secure world to ensure that only the authorized IEE application (i.e.,

the security-sensitive application running in the IEE) can access the

related IEE sensitive resources, protecting the security-sensitive

application in one IEE from other IEEs and the rich OS. For example,

TrustICE [55] relies on the IEE monitor to protect IEE memory via

dynamically controlling the security attribute of the IEE memory.

Ginseng [56] constructs the IEEs to protect secrets of third-party

applications in the normal world without deploying any application-

specific logic in the secure world. SANCTUARY [14] allocates its

IEEs as the per-core environments to protect the memory desig-

nated for IEEs (hereinafter referred to as IEE memory) in the normal

world from being accessed by any other non-secure cores. In this

paper, we use "switch out" to denote the process of one core’s con-

text switching from IEE to untrusted rich OS, and "switch in" to

represent the reverse process on each core.

Compared with TEE systems, the IEE systems can minimize the

TCB of the secure world by moving security-sensitive applications

into the normal world and only installing an IEE monitor in the se-

cure world. Also, IEE systems can achieve a better portability since

the security-sensitive applications are installed and executed in the

normal world. However, since the security-sensitive applications

are isolated and protected by a software component (i.e., the IEE

monitor), IEE systems may not achieve the same level of security

protection as TEE systems.

In this paper, we conduct a systematic study on the existing IEE

data protection models and the ARM cache attributes, and discover

three new cache-based attacks called CITM that can be leveraged

to manipulate the sensitive data protected in the IEEs (hereinafter

referred to as IEE data). First, the attackers may manipulate the

IEE data through cross-core cache operation during concurrent

execution. On multi-core platforms, it is not secure to only ensure

core-wise isolation on the IEE memory to defend against the con-

currently running untrusted rich OS [14], since the cache may be

still open for the cross-core access and thus manipulated by attack-

ers. Second, when a security-sensitive application is suspended or

finished (i.e., during the "switch out" process), the IEE system must

conduct several security measures to protect the IEE data from later

being accessed by the rich OS [56]. However, the attackers may

bypass these security measures by manipulating the non-secure

cache mapping to the IEE memory used for the security measures.

Third, when the IEE memory protection is achieved by dynamically

controlling the security attribute of the memory (e.g., configuring

it as non-secure before "switch in" and as secure before "switch

out" [55]), due to incomplete security protection on cache, attackers

may steal sensitive IEE data during the "switch out" process and

tamper with IEE data during the "switch in" process.

We conduct case studies of CITM attacks against three IEE sys-

tems including SANCTUARY [14], Ginseng [56], and TrustICE [55].

The experimental results show that attackers may successfully steal

and modify IEE data of SANCTUARY system via cross-core L1

cache manipulation during concurrent execution, steal IEE data

of Ginseng system through bypassing the security measures en-

forced during the "switch out" process, and steal and tamper with

the IEE data of TrustICE system by manipulating the non-secure

cache of IEE memory which is not well protected during the IEE’s

context switching processes, respectively. Our case studies show

the wide existence of CITM attacks in IEE systems and point out

the importance of securely protecting the cache in addition to the

main memory for ensuring the security of IEE data.

Finally, we propose a countermeasure to resolve the attacks,

whose root causes are the incoherence of security-related attributes

between cache and memory and desynchronized read and write op-

erations between cache and memory. The main idea of our solution

is to securely configure the cache attributes for the IEE memory

and/or clean the cache mapping to the IEE memory during context

switching. We develop a prototype of the defense system on the

i.MX6Quad Sabre development board and the experimental results

show that our countermeasure has a small system overhead on the

rich OS and security-sensitive applications.

In summary, we make the following contributions.

• We conduct a systematic study of cache attributes and their

security implications on IEE systems, and discover new cache-

based attacks called CITM.

• We perform case studies of CITM attacks against three recently

proposed IEE systems. Our attack prototypes show that the CITM

attacks may be misused to steal and tamper with the sensitive

data in IEE systems. We point out that it is critical to consider

memory and cache together when designing an isolated execu-

tion environment.

• We present a countermeasure to mitigate the CITM attacks after

identifying the root causes. The prototype shows it can effec-

tively remove CITM attacks from IEE systems with small system

overhead.

2 BACKGROUND
We first introduce the ARM TrustZone hardware security extension

and then discuss the cache architecture on the ARM processors.

We also provide a brief description on three IEE systems including

SANCTUARY [14], Ginseng [56], and TrustICE [55].

2.1 ARM TrustZone
TrustZone is a security extension since ARMv6 architecture to

provide a hardware-based isolation environment for secure code

L2 cache

TZASC

Core_0

Memory

Normal World

User Applications

L1 cache

NS=1 Line Data

NS=1 Line Data

Rich OS

Core_1

Secure World

Trusted Applications

L1 cache

NS=0 Line Data

NS=0 Line Data

Trusted OS

Secure ResourcesNon-secure Resources

NS=1 Line Data

NS=0 Line Data

NS=1 Line Data

NS=0 Line Data

Figure 2: Architecture of ARM TrustZone

execution. The security is achieved by partitioning the resources

including processors, memory, and peripherals into one of two

worlds, i.e., the secure world and the normal world. As illustrated

in Figure 2, normal user applications run on a rich OS in the normal

world, and the secure world is preserved for running a small number

of trusted applications and a trusted OS.

TrustZone enables the separation of the physical DRAM (main

memory) into two partitions, namely, secure memory and non-secure
memory. The non-securememory is accessible to both normal world

and secure world, while the secure memory can only be accessed

by the secure world. The memory separation is achieved through

a hardware peripheral called TrustZone Address Space Controller
(TZASC), which can split the entire memory address space into sev-

eral memory regions. TZASC allows each region to specify its own

security attribute as either secure or non-secure. The latest TZASC

model TZC-400 [6] introduces a new security-control feature called

Identity-based Filtering to separate the non-secure memory regions.

In the ARM system, each device (e.g., CPU, GPU, DMA controller

etc.) acts as a bus master and is assigned with a unique Non-Secure

Access IDentifier (NSAID). TZC-400 can configure one non-secure

memory region as only accessible to specific devices based on their

NSAIDs, and block other devices’ accesses to this region.

2.2 ARM Cache Architecture
Cache is a component on the processors used for buffering the

memory’s data. Most modern ARM processors [7] are equipped

with two levels of caches, i.e., level-one (L1) cache and level-two (L2)

cache. The L1 cache is further categorized into instruction cache (I-

cache) and data cache (D-cache). The L2 cache is unified and holds

both instructions and data. Both L1 and L2 caches are organized as

N-way Set Associative Cache. Specifically, the entire cache space is
divided into 𝑁 equally-sized pieces, called ways. Further, each way

is indexed with 𝑘 cache lines, and each line serves as the unit of

data saved in the cache. Meanwhile, the cache lines from all ways

with the same index compose one cache set. To map the memory

into cache, the memory is divided into blocks, and each block has

the same size as a cache line. The memory’s block 𝑖 can be loaded

into any cache line belonging to the cache set 𝑖 𝑚𝑜𝑑 𝑘 . The cache

lines are mostly Physically Indexed, Physically Tagged (PIPT), i.e.,

they are indexed through the physical address of the corresponding

memory.

The cache hierarchy is divided into two domains, i.e., inner
cacheability domain and outer cacheability domain. The inner
cacheability domainmeans the cache equipped inside a specific CPU

core (e.g., the L1 cache which is usually exclusively owned by one

core), and the outer cacheability domain means the cache equipped

outside the CPU cores (e.g., the L2 cache which is usually shared

among the cores). Each cacheability domain can be configured us-

ing four attributes, i.e., non-cacheable, write-back, write-through,
and write-allocate, which define the caching behavior of the mem-

ory accessing operations. And the attributes are configured at the

granularity of memory page. When a memory page is configured as

non-cacheable for a cacheability domain, any reading and writing

operation on the memory page will not go through that cacheability

domain. Correspondingly, the memory page is cacheable for the
cacheability domain when it is configured as write-through or write-
back. Thewrite-through attribute additionally means to forward any

writing on the current level cache immediately to the next level stor-

age. For example, writing on the L1 cache will be forwarded to L2

cache, and L2 cache will be forwarded to main memory. In contrast,

the write-back attribute means the changes are only buffered in the

current level cache, and the next level storage can only be updated

when the cache eviction happens. When a cache miss happens for

a write transaction, if the cacheability domain is set with the write-
allocate attribute, a new cache line will be allocated to save the write

result. Otherwise, the cache-missed write will make modifications

to the next level storage. In the following, when both the inner
cacheability domain and the outer cacheability domain are set with

the same attributes, we omit the cacheability domain attribute for

brevity. For example, we use write-back, write-allocate to represent

inner write-back write-allocate, outer write-back write-allocate.
Besides the settings of caching attributes, ARM cache’s status

are also affected by other maintenance operations, such as invali-
dation and cleaning instructions. When the invalidation instruction

is executed, it directly invalids the data saved in the cache. And the

cleaning instruction forwards the contents of the target cache to

the next level cache or main memory. For ARM processors with

TrustZone support, caches in all levels are extended with an addi-

tional tag bit (i.e., the NS-bit in Figure 2) to record their security

state. When accessing memory from normal world, the correspond-

ing cache lines will be set as non-secure; when accessing memory

from secure world, the corresponding cache lines will be set as

secure. In addition, the cache line’s NS-bit is set automatically by

the hardware and cannot be modified by the software.

2.3 IEE Systems
The IEE system aims to construct an isolated execution environment

(i.e., IEE) in the normal world through a trusted IEE monitor in the

secure world, as illustrated in Figure 1. The security-sensitive appli-

cation running inside the IEE could be a code snippet, a function,

an application, or a system, whose sensitive data is well protected

against the untrusted rich OS. However, existing IEE systems focus

more on protecting the main memory that is commonly utilized to

accommodate the sensitive IEE data, while the security of cache in

IEE systems has not been well studied. In the following, we provide

a brief description on three recently proposed IEE systems, i.e.,

SANCTUARY [14], Ginseng [56], and TrustICE [55].

SANCTUARY supports to run sensitive apps and a micro kernel

in an IEE concurrently with the rich OS on multi-core platforms.

Each IEE is allocated to run on a dedicated core with core-isolated

memory, and the execution of the IEE could not be interrupted

by other non-secure cores. To prevent the cache-based attacks,

the micro kernel will clean the L1 cache during the IEE context

switch processes (i.e., before an IEE is terminated or before the

sensitive apps are loaded). Also, the L2 cache is disabled for the

core running the IEE. Since the L1 cache locates inside each core

and cannot be directly accessed from the other cores, SANCTUARY

provides no extra protection on L1 cache during the run time of

an IEE. Ginseng is an IEE system that protects sensitive data of

selected functions on multi-core platforms. To defend against the

concurrently running malicious OS, the sensitive data is stored and

processed only in the registers, which is inaccessible from the other

cores. Since the sensitive data are only stored in registers instead of

core-isolated memory, Ginseng provides no protection on the cache.

TrustICE is an IEE system implemented on single core platforms,

where the IEE and untrusted rich OS could not run concurrently.

The security-sensitive application running in one IEE consists of

a user program and a micro kernel. Memory is leveraged to store

and process the sensitive data, and the sensitive data protection is

achieved by dynamically configuring the security attribute of IEE

memory, i.e., memory allocated for an IEE will be set as non-secure

when the IEE is running and as secure otherwise. TrustICE also

lacks of protection on the cache.

3 THREAT MODEL
In this paper, we focus on investigating the attacks against the

sensitive data in Isolated Execution Environments (IEEs), as illus-

trated in Figure 1(b). We assume the rich OS in the normal world

cannot be trusted, and the attacker with the root privilege aims

to break the confidentiality and integrity of the sensitive data in

the IEE, i.e., stealing and tampering with the sensitive data in the

IEE. We assume the ARM TrustZone technique can be trusted to

provide secure isolation between the normal world and the secure

world. The software running inside the secure world (e.g., the IEE

monitor) can be trusted and cannot be compromised by the rich

OS. We assume the security-sensitive application running in the

IEE will not deliberately disclose its sensitive data to the outside,

and its code is well protected by the IEE monitor.

4 CITM ATTACKS
We first abstract two generic data protection models in IEE systems.

Next, we uncover three types of cache-based CITM attacks that

can compromise the security of the IEE data against these two

data protection models. Also, we introduce the cache lockdown

technique which is frequently leveraged in the CITM attacks.

4.1 IEE Data Protection
Two generic data protection models have been adopted to protect

the IEE data in two scenarios, namely, (i) allowing untrusted proce-

dures to run concurrently with one security-sensitive application in

the normal world and (ii) suspending all untrusted procedures when

a security-sensitive application is running in the normal world.

Model 1: Untrusted procedures are allowed to run concur-
rently with a security-sensitive application on two (ormore)
different cores in the normal world. On multi-core platforms,

when the security-sensitive application is running on one core in

the normal world, untrusted procedures (e.g., the untrusted rich

OS) may run concurrently on different cores [14] and/or run on

the same core in a time-sharing manner [56]. Such IEE systems

usually have three security measures in place to protect its sensi-

tive data. First, the core-isolated storage (e.g., memory allocated

for one core and inaccessible to the other cores [14], or the on-core

storage like registers [56]) is allocated for each security-sensitive

application to process its sensitive data during concurrent execu-

tion. Second, when the execution of a security-sensitive application

is suspended or finished, all its sensitive data is protected against

untrusted procedures by cleaning the core-isolated storage [14]

during the "switch out" process. Third, when the execution of a

security-sensitive application is resumed or started, the IEE mon-

itor is responsible for restoring the core-isolated storage [56] or

allocating blank core-isolated storage [14] during the "switch in"

process.

Model 2: Untrusted procedures are NOT allowed to run con-
currently with security-sensitive applications in the normal
world. On single-core platforms, when one security-sensitive ap-

plication is running in the normal world, all untrusted procedures

are always suspended [55]. On multi-core platforms, all untrusted

procedures are suspended by the IEE monitor even if there are

cores available [23]. Since all cores can only run either the security-

sensitive application or the untrusted procedure at any time in the

normal world, there is no need to allocate core-isolated storage.

Meanwhile, it still requires to enforce the security measures that

should be performed during the IEE’s context switching processes.

Besides the security measures introduced in model 1, when concur-

rently running is not allowed, the protection could also be achieved

through configuring the IEE memory as inaccessible to the nor-

mal world [55] during the "switch out" process, and restoring it as

accessible to the normal world [55] during the "switch in" process.

4.2 CITM Attack Types
Existing IEE systems focus more on protecting the memory, but the

security of cache in IEE systems has not been well studied. After

conducting a comprehensive investigation of the cache features on

the ARM platforms, we find both data protection models enforced

in the IEE systems might be compromised via manipulating the

cache in the normal world by the untrusted rich OS. From the

attacker’s point of view, the two IEE data protection models could

be defeated from two main directions, i.e., manipulating the core-
isolated memory during concurrent execution and tampering with the
context switching of the IEE. In the following, we introduce three

types of CITM attacks identified on the IEE systems.

Type I. Manipulating core-isolated memory during concurrent
execution.

In multi-core systems, when main memory is used as the core-

isolated storage for the security-sensitive application, the concur-

rently running malicious OS may steal or modify the IEE data in

the core-isolated memory by manipulating the cache in the normal

world. When the core-isolated memory is set as cacheable, the IEE
data in the memory will pass through the cache when the memory

is accessed. Since the memory is accessed by the security-sensitive

application in the normal world, the corresponding cache lines are

tagged as non-secure (see Section 2.2) and may be manipulated by

the untrusted rich OS. For example, by crafting a page table entry

with the physical address pointing to a core-isolated memory page,

the malicious OS could manipulate its cache lines through accessing

the corresponding virtual address. As an example, we illustrate how

the IEE data in SANCTUARY [14] might be compromised by the

concurrently running malicious OS through manipulating cache in

Section 5.1. Note modern ARM platforms provide hardware features

to ensure memory isolation, but they lack similar features to ensure

cache isolation. For example, the Identity-based Filtering feature on

the TZC-400 (see Section 2.1) can be used to isolate memory, but it

does not guarantee the isolation of cache.

Type II. Bypassing security measures during IEE "switch out" pro-
cess.

The attackers may aim to bypass the security measures that are

enforced to ensure data protection during IEE’s context switching

processes. Since the richOS cannot be trusted, the securitymeasures

during the "switch in" process are always initiated and accomplished

by the trusted IEE monitor in the secure world. Therefore, since

the associated cache lines are tagged as secure and could not be

manipulated in the normal world, it is difficult to bypass those

security measures by manipulating the cache lines. For security

reason, the security measures enforced during "switch out" process

should be performed either by the IEE itself in the normal world

or the IEE monitor in the secure world. However, we uncover the

security measures could be bypassed in both cases.

When the security measures are performed by the IEE in the

normal world, data cleaning could be achieved through overwriting

the IEE memory with random data or all zero data if memory is

leveraged to store IEE data. Since the memory cleaning is performed

in the normal world, the corresponding cache lines are non-secure.

Thus, it is possible to constrain the memory writings in the cache

and retain the memory unchanged by controlling the non-secure

cache. For example, when the memory is set as write-back, write-
allocate, all memory writing will be buffered in the corresponding

cache set until the cache set is evicted (see Section 2.2). The attack-

ers can leverage the cache lockdown technique (see Section 4.3)

to prevent the cache eviction, so that the sensitive data on IEE

memory might not be securely cleaned after the security-sensitive

application has been suspended or finished.

When the security measures are performed by the IEE monitor

in the secure world, the IEE should be able to directly transfer the

control to the IEEmonitor in the secure world without involving the

rich OS. Otherwise, the attacker may manipulate the cross-world

context switching to bypass the security measures. However, the

context switching from the normal world to the secure world is

Page Num Page Attribute

 Page 1 Cacheable

 Page 2 Cacheable

Cache Way

Page Cache Set 2

} Page Size

Page Cache Set 1

 Page 7 Cacheable

 Page 6 Non-cacheable

 … …

 … …

Page Cache Set 3

Page Cache Set 4

Page Cache Set 5

Figure 3: Locking Specified Cache Set via Page Table Control

normally initiated by invoking a high-privileged instruction called

Secure Monitor Call (SMC) in the rich OS kernel. When the security-

sensitive application is a function or an application [56], the SMC
instruction cannot be directly invoked inside the IEE. To solve this

problem, some IEE systems choose to trigger the context switching

by raising an external abort in the secure world via intentionally

accessing secure memory from the security-sensitive application.

However, since the cache lines mapping to the secure memory are

non-secure when being accessed in the normal world, the malicious

rich OSmaymanipulate the corresponding cache lines to bypass the

control switching and the security measures (e.g., IEE data cleaning).

We show how the security measures during the "switch out" process

in the Ginseng system [56] can be bypassed via controlling the non-

secure cache in Section 5.2.

Type III. Misusing incomplete security measures during IEE’s con-
text switching.

In some IEE systems, the memory protection during context

switching is achieved by dynamically controlling the security at-

tribute of the IEE memory, i.e., configuring it as non-secure during

"switch in" and secure during "switch out". In those systems, even

if the security measures during context switching are securely en-

forced, the cache may still be misused by attackers to manipulate

the IEE data. This is because the memory configuration is achieved

through TZASC (see Section 2.1), but the corresponding cache lines

might be still non-secure in the normal world. Therefore, inappro-

priate cache cleaning during "switch out" might lead to IEE data

leakage. Similar, malicious data might be loaded into the cache be-

fore "switch in" and later be fed to the security-sensitive application

rather than the original sensitive data in the IEE memory. Note

Type III attack is due to the incomplete security measures on cache,

which is different from Type II attack that focuses on bypassing the

existing security measures during context switching. We illustrate

how TrustICE [55] system becomes vulnerable by manipulating

cache during the "switch in" and "switch out" processes.

In summary, when the IEE systems use Model 1 for data protec-

tion, they may suffer from all three identified attacks. When using

Model 2, the IEE systems are vulnerable to Type II and III attacks,

but not Type I attack since the concurrently running is not allowed.

Also, Type I and III attacks work only when memory is employed to

store IEE data, and Type II attack has this requirement only when

the security measures for "switch out" process are performed in

IEEs.

4.3 Cache Lockdown Technique
Cache lockdown is a feature that enables a program to load code

and data into cache and mark it as exempt from eviction [52]. The

main purpose of locking the code or data in cache is to provide

faster system response and avoid the unpredictable execution times

due to the cache line eviction. Attackers may misuse this technique

to launch the CITM attacks, e.g., locking the writing operation for

memory in the cache to invalidate the memory-cleaning operations.

Three approaches may be adopted to achieve cache lockdown.

First, some ARM development boards (e.g., i.MX53 and i.MX6Quad

development boards) allow the users to lock certain L2 cache ways

by configuring the L2 auxiliary cache control register [59]. However,
this hardware-based locking control register is not supported on

ARMv8 processors. Second, by setting the memory regions con-

trolled by the attackers as outer cacheable and all other memory

regions as outer non-cacheable, attackers can exclusively occupy the

L2 cache. This method may introduce huge performance overhead

on the normal execution of the system due to the exclusive usage of

L2 cache. Third, attackers may exclusively occupy some L2 cache

sets by conducting a fine-grained control on each memory page’s

caching attributes. Specifically, since the caching attributes are set

at the granularity of memory page, we divide each cache way into

page-sized blocks. Blocks with the same index compose a page

cache set (see the cache lines marked gray in Figure 3). To lock the

data of a specified memory page on the L2 cache, attackers can

configure that memory page as outer cacheable, and set all other

memory pages sharing the same page cache as outer non-cacheable.
For example, in Figure 3, when page 1 and page 6 share the same

page cache set, attackers can lock the data of page 1 on the L2

cache by setting page 1 as outer cacheable and page 6 as outer non-
cacheable. This technique has been leveraged in the SecTEE [61]

system to prevent cache-based side-channel attacks. Considering

the small size of L1 cache, we choose to lock only L2 cache using

the third method in our attacks.

5 CASE STUDY OF CITM ATTACKS
We conduct case studies of the CITM attacks on three well-

known IEE systems including SANCTUARY [14], Ginseng [56], and

TrustICE [55] to illustrate how they could be utilized to compromise

IEE systems on real hardware testbeds. Since SANCTUARY system

is achieved through the ARM Fast Models virtualization tools rather

than on the actual development board, we simulate the cache oper-

ations of SANCTUARY on the i.MX6Quad development board, and

successfully steal and modify the sensitive IEE data via the cross-

core L1 cache manipulation. The cache operations of SANCTUARY

are mainly obtained through carefully studying the published pa-

per [14]. The CITM attacks of the Ginseng and TrustICE systems

are implemented with the source codes shared from their authors

on two real hardware development boards, namely, HiKey620 and

i.MX6Quad SABRE.

5.1 SANCTUARY: Manipulating L1 Cache
In the following, we first introduce the security measures of SANC-

TUARY on IEE data protection. Next, we elaborate that SANCTU-

ARY suffers from Type I Attack due to the lack of protection on

the L1 data cache at the run time of an IEE. Then, we detail the

attacking procedure that can leak and tamper with sensitive data

in IEE of the SANCTUARY system.

5.1.1 Data Protection Mechanisms. SANCTUARY includes a num-

ber of data protection mechanisms to protect the sensitive data

in IEE. When the IEE finishes its running (i.e., during the "switch

out" process), the sensitive data will be cleaned by the micro kernel

running inside the IEE, which overwrites all-zero data to the pro-

tected core-isolated memory and invalidate the L1 cache (L2 cache

is disabled for the core-isolated memory in SANCTUARY). Before

booting up one IEE (i.e., during the "switch in" process), the IEE

monitor in the secure world constructs a clean environment for the

IEE. In addition, the micro kernel invalidates the L1 cache before

the sensitive apps are loaded. Therefore, SANCTUARY is immune

to Type III attack, since the core-isolated memory and L1 cache

are safely cleaned by the micro kernel during both "switch in" and

"switch out" processes and L2 cache is disabled. Also, SANCTUARY

is immune to Type II attack, since the data cleaning operation is

accomplished by the micro kernel running inside IEE. To bypass

the data cleaning operation, the attackers should lock the memory

overwriting on the L1 cache (i.e., preventing the data on L1 cache

from being evicted to memory). However, the eviction actions of

the L1 cache are determined by the memory operations on that

core and the core-isolated memory pages’ cache attributes. The

attackers cannot control the eviction by manipulating another core.

In addition, the cache attributes of the core-isolated memory are

controlled and protected by the micro kernel running in the IEE.

SANCTUARY defends against the concurrently running mali-

cious OS by protecting both memory and L2 cache. It allocates core-

isolated memory for each IEE. The memory isolation is achieved

through the Identity-based Filtering feature (see Section 2.1). Par-

ticularly, it assigns each core with a unique Non-Secure Access

IDentifier (NSAID), and allocates isolated memory regions for each

NSAID by configuring TZC-400. Since existing ARM platforms do

not support to assign the NSAID at the granularity of CPU core, i.e.,

all the CPU cores share the same NSAID, the memory isolation is

achieved through the ARM Fast Models virtualization tools rather

than on the actual development board. Protection of the L2 cache

is achieved by configuring the protected memory region as outer
non-cacheable. Thus, the sensitive data do not pass through the L2

cache, which is usually shared among all cores on the ARM mobile

devices. Since the L1 cache locates inside each core and cannot be

directly accessed from the other cores, SANCTUARY provides no

extra protection on L1 cache during concurrent execution. However,

we identify one Type I attack in SANCTUARY by manipulating the

L1 data cache on a different core.

5.1.2 Type I Attack in SANCTUARY. After investigating the cache

features on the ARM platform, we discover a cache attribute named

shareability that can be configured to read/write one core’s L1

data cache via operating another core’s L1 data cache [5]
1
. The

shareability attribute defines the range of the cache to be ensured

of value coherency. There are two types of shareability domain, i.e.,

the inner shareability domain and the outer shareability domain. The
former ensures the value coherence among the cores inside one

cluster, and the later ensures the value coherence among the cores

1
The shareability attribute works only for L1 data cache, but not L1 instruction cache.

in all clusters. When the ARM platforms have more than one group

of cores, each group represents a cluster. For instance, the Juno

r2 development board is equipped with two clusters, one cluster

with a quad-core Cortex-A53 processor and another cluster with a

dual-core Cortex-A72 processor [9].

Since value coherency is naturally ensured on the single-core

platforms, the shareability attribute is only configurable on the

multi-core platforms [8]. It only works when the processors run in

the Symmetric Multi-Processing (SMP) mode [8], which is set by de-

fault on most multi-core platforms. When the shareability attribute

is set, the value coherency can be ensured by the Snoop Control Unit
(SCU), which contains buffers that handle direct cache-to-cache

transfers between cores [7]. If the value on one core’s L1 data cache

is modified, SCU synchronizes the changes to the L1 data cache of

other same-cluster cores if the corresponding memory page is set

as inner shareable. The changes will be synchronized to all other

cores if the memory page is set as outer shareable [8]. For security
reason, the data on non-secure cache will not be synchronized to

secure cache, and vice versa.

We conduct a series of experiments to better understand the

impacts of the shareability attribute on the non-secure L1 data

cache [5] (see Appendix A). The results show that the data on

one core’s L1 data cache could be leaked out to and tampered by

another core, when both cores run in the normal world (it ensures

the corresponding cache lines to be non-secure) and access the same

physical memory address with that memory page’s cache attribute

set as inner shareable or outer shareable for both cores. The cache

attribute is configured separately for each core since it is configured

in the page tables, and each core has its own set of page tables. In

contrast, data on one core’s L1 data cache could not be leaked out to

and tampered by another core, when the corresponding memory is

set as non-shareable (i.e., inner&outer non-shareable) for that core.

5.1.3 Attacking Procedure. We simulate the cache operations of

Sanctuary on the i.MX6Quad SABRE development board. As illus-

trated in Figure 4, core_0 and core_1 are running in the normal

world, and core_2 is running in the secure world. The security-

sensitive application is running on core_0, and the untrusted rich

OS is running on core_1. The Static Trusted App (i.e., the IEE moni-

tor in SANCTUARY) runs on core_2, and it configures the TZC-400

to allocate an isolated memory region for core_0 and disable the

usage of L2 cache for core_0. Though the memory region assigned

to core_0 is non-secure memory, it is protected by the Static Trusted
App to block the access from core_1. The L1 cache lines accessed by

core_0 are non-secure cache, since they are accessed in the normal

world. According to our experimental results listed in Appendix A,

it is possible to affect one core’s L1 data cache by manipulating

another core’s L1 data cache, when both caches are non-secure.

Therefore, the sensitive data in core_0’s L1 data cache might be

stolen or modified through controlling core_1’s L1 data cache.

In Linux kernel, all the cacheable memory is by default set as

shareable (inner or outer shareable). According to the description
in the paper [14], the SANCTUARY system prevents the cache

based attacks by invalidating the L1 cache during the IEE context

switching processes and changing the cacheability attribute of the

core-isolated IEE memory to be inner cacheable, outer non-cacheable
during the runtime of an IEE. Since the shareability attribute is not

co
nf

ig
ur

e

Core_0

Security-sensitive

Applications

L1 NS-cache

Untrusted

Rich OS

L1 NS-cache

Static Trusted App

L1 S-cache

L2 cache

NS-cache S-cache

TZC-400

Protected by

Static Trusted App

Protected by

TrustZone

Core_1 Core_2

Memory

Normal World Secure World

SANCTUARY

 Procedure

Attack

Procedure

Data Synchronization

Figure 4: CITM Attack on SANCTUARY

configured, the protected memory will be by default set as shareable.
Therefore, we can read and write the sensitive data residing in the

L1 data cache during the concurrent execution (i.e., when an IEE is

running currently with the untrusted rich OS) by leveraging the

shareability attribute. As illustrated by the red lines in Figure 4, we

first craft a page table entry for core_1, configuring the memory

page’s cache attributes as shareable and making its physical address

point to a memory page of core_0 (i.e., a memory page protected

by SANCTUARY). Then, when we access the corresponding virtual

address on core_1, sensitive data in core_0’s L1 data cache could

be stolen or modified due to the value coherency ensured by the

shareability attribute.

In the above attacking procedure, we need to identify physical

addresses of IEE memory (i.e., memory allocated for core_1). Since

the page tables associated with the IEE memory is maintained in

the IEE, the attackers cannot directly obtain its physical address

range. However, the entire physical memory is divided into three

parts, i.e., IEE memory, TEE memory (memory allocated for the

secure world), and unprotected memory (memory allocated for the

untrusted rich OS). The address range of the unprotected memory

is naturally known to the malicious rich OS. The remaining two

memory regions can be distinguished since the cache corresponding

to IEE memory is non-secure while the cache of TEE memory

is secure. Though reading the TEE memory will always return

zero or generate an exception (depending on the configuration of

TZASC), reading of IEE memory can obtain real data when the

memory data is buffered in the cache. Therefore, we can identify

the IEE memory through probing the memory region apart from

the unprotected memory. Since the size of cache is normally smaller

than IEE memory, we may need to probe several times to identify

the entire IEE address range. The probing times depend on the size

of IEE and TEE memory, the time durance of IEE data in L1 data

cache, etc.

Note since the cache shareability attribute is not well-known

and never mentioned in SANCTUARY paper [14], when other de-

velopers follow the paper for reimplementation, there is a high

probability that their systems are prone to the same problem.

5.2 Ginseng: Mapping to Non-Secure Cache
As described in Section 2.3, Ginseng is an IEE system that protects

the sensitive data by storing and processing them in registers. As

such, Ginseng is immune to the Type I attack. Also, since the con-

tents in registers do not pass through cache, it is immune to the

Type III attack too. However, we discover that Ginseng suffers from

the Type II attack. Ginseng relies on the TEE monitor running in

the secure world to perform the data cleaning operations during

the "switch out" process. Since the rich OS cannot be trusted, the

control flow is transferred directly from the IEE to the TEE monitor

by accessing the secure memory in the IEE in order to trigger a

secure interrupt. However, by manipulating the non-secure cache

(that maps to the secure memory) in the normal world, the attack-

ers can block the control flow switching from the IEE to the IEE

monitor and thus bypass the data cleaning operations.

1 /*sensitive function*/

2 int genCode(sensitive long key_top,

3 sensitive long key_bottom) {

4 // operations for insensitive data

5 ...

6 // invoke sensitive function

7 hmac_sha1(key_top, //sensitive data

8 key_bottom, //sensitive data

9 challenge, //insensitive data

10 resultFull); //insensitive data

11 // truncate 20-byte hmac_sha1() result to 4-byte

truncatedHash↩→
12 ...

13 // invoke insensitive function

14 printf("OTP: %06d\n", truncatedHash);

15 return truncatedHash;

16 }

17

18 /*sensitive function*/

19 void run(){

20 // mark the protected data as sensitive

21 sensitive long key_top, key_bottom;

22 // read keys from TEE secure world

23 ss_read(UUID1, UUID2, key_top);

24 ss_read(UUID3, UUID4, key_bottom);

25 // invoke sensitive function

26 genCode(key_top, key_bottom);

27 }

Listing 1: A Sample Program Protected by Ginseng

5.2.1 Data Protection Mechanisms. We illustrate the working flow

of Ginseng system through a sample program shown in Listing 1.

The program is to perform a hmac_sha1 operation based on two

keys obtained from the secure world. Specifically, two local vari-

ables are marked to be protected as sensitive, i.e., key_top and

key_bottom (line 21). Ginseng provides a compiler to perform static

taint analysis for identifying all variables that may carry sensitive

data and allocating them in the registers. The functions involv-

ing sensitive data are identified as sensitive functions, and will

undergo code integrity check before being executed. In this exam-

ple, the functions run() (line 19), genCode() (lines 2 and 26), and

hmac_sha1 (line 7) are sensitive functions. Function printf() (line
14) is an insensitive function, whose code integrity is not guaran-

teed. All sensitive data associated operations are executed in the

registers instead of in the memory.

To defend against malicious kernel, Ginseng introduces six se-

cure API functions to transfer the control flow directly from user

space of the normal world to GService (i.e., the IEE monitor in

Ginseng). Two of the secure API functions are provided for the

programs to securely interact with GService i.e., ss_write() and
ss_read(). Another four secure API functions will be inserted to

the program automatically by the compiler. The ss_saveCleanV()
and ss_readV() are two secure API functions inserted before and

after each function invocation inside the sensitive functions, where

the former is responsible for encrypting the sensitive data, storing

the encrypted data in memory, and cleaning the corresponding reg-

isters, and the later takes charge of decrypting the sensitive data and

restoring them into registers. For example, the ss_saveCleanV()
and ss_readV() will be inserted before and after the printf()
function (line 14) inside genCode(). Another two secure API func-

tions ss_start() and ss_exit() are inserted at the begin and end

of each sensitive function to conduct preparation work (e.g., per-

forming code integrity check for the sensitive function) and clean

all sensitive registers to prevent data leakage, respectively.

Before "switching out" of the IEEs, Ginseng achieves a cross-

world context switching directly from the IEEs that run in the

user space of the normal world to the GService that runs in the

secure world, and performs the security-sensitive operations (e.g.,

encrypting the sensitive data, cleaning the sensitive registers etc.)

in the GService. The normal way to trigger the cross-world context

switching is invoking the high privileged SMC instruction from

kernel space. However, the approach is not applicable in Ginseng,

since its IEEs run in the user space and are not able to invoke the

SMC instruction. Ginseng resolves the problem by triggering a se-

curity violation in the IEEs. Specifically, each secure API function

is assigned a unique secure memory by configuring TZASC. Then,

the invocation of a secure API function will trigger a security vio-

lation since it attempts to access secure memory from the normal

world. By default, the processor raises an external abort (EA) in the

normal world when handling the violation. To raise the EA in the

secure world, GService sets the external abort bit of the Secure

Configuration Register, so that GService can obtain the EA and

handle the requests sent by secure APIs without the attendance of

the malicious kernel.

5.2.2 Type II Attack in Ginseng. However, this triggering solu-

tion could be manipulated since the cache lines corresponding

to the secure memory are non-secure. We use the secure API

ss_saveCleanV() as an example to illustrate the problem (lines 11

to 19 in Listing 2 are the implementation of ss_saveCleanV() in
Ginseng). It first loads the address of __channel_save_clean (the

securememory assigned to ss_saveCleanV()) into register x4 (line
16). Then it loads the data from the secure memory located at x4 to

the register x0 (line 18). Figure 5 illustrates the detailed execution

flow. 1○When the "secure memory loading" instruction (i.e., line

18) is executed, the processor tries to load data from cache. 2○ The

cache fetches data from secure memory due to cache miss. 3○ An

external abort is raised since accessing secure memory from normal

Normal World Secure World

Non-secure Cache Secure Memory

Protected by GService Protected by TrustZone

① Read Cache

Sensitive Data

Encrypted

Sensitive

Function

...

bl ss_saveCleanV

bl insensitive_func GService

Insensitive_func

⑤ Switch to Sensitive

Function

Write Data

② Read Memory

③ External Abort

⑥ Control Flow Transfer

②* Cache Hit

Cache Miss

The Execution is Blocked

when Cache Hit
Ginseng Procedure Attack Procedure

④ Encrypt Data and

Clean Registers

Figure 5: CITM Attack on Ginseng

1 /* Attack preparation: fill in the corresponding cache in

advance*/↩→
2 writeSM:

3 /* __channel_save_clean:

4 virtual address of the secure memory

5 assigned to ss_saveCleanV*/

6 ldr x4, =__channel_save_clean

7 /* store data to secure memory */

8 str x0, [x4]

9 ret

10

11 /*Implementation of the secure API ss_saveCleanV in Ginseng*/

12 ss_saveCleanV:

13 /* __channel_save_clean:

14 virtual address of the secure memory

15 assigned to ss_saveCleanV*/

16 ldr x4, =__channel_save_clean

17 /* load data from secure memory */

18 ldr x0, [x4]

19 ret

Listing 2: Exploiting the Cache of Secure Memory

world, and is captured by GService. 4○ GService encrypts the sen-

sitive data and cleans the corresponding registers. 5○ The control

flow is transferred back to the secure API ss_saveCleanV(). 6○
The insensitive function insensitive_func() is invoked. Though
the secure memory is protected against malicious kernel, the cache

accessed in step 1○ is non-secure cache, since it is accessed from the

normal world. Therefore, it could be manipulated by the attackers.

5.2.3 Attacking Procedure. Based on Ginseng’s open source

code [25], we implement a prototype of Ginseng on a HiKey620

development board with a 8-core ARM Cortex-A53 processor. Our

attack can successfully steal the sensitive data through the attack-

ing procedure illustrated by the red lines in Figure 5. Particularly,

we introduce a step 0○, which fills in the cache lines mapping to

the secure memory before step 1○ is executed. Then, when the pro-

cessor tries to load data from cache through the "secure memory

loading" instruction (i.e., step 1○), it encounters a cache hit rather

than cache miss. As such, the step 2○* will be executed while the

normal execution of steps 2○, 3○, 4○ and 5○ are blocked. Finally,

in step 6○, the insensitive function insensitive_func() could be

manipulated to read the uncleaned sensitive registers, since it is

executed on the same core as the sensitive function and is not pro-

tected through code integrity check. For example, we can change

the control flow of printf() (an insensitive function invoked by

the sensitive function genCode() in Listing 1 through modifying

the libc.so library. Since the clean process is interrupted unno-

ticeably, the function insensitive_func() can read the sensitive

data (e.g., keys) from the registers.

The writeSM function in Listing 2 is used to accomplish step

0○, i.e., writing data to the cache of __channel_save_clean (the
secure memory assigned to ss_saveCleanV()). First, the virtual
address of __channel_save_clean (line 6) is loaded into regis-

ter x4. Since the protected program’s (e.g. the hmac_sha1 pro-

gram in Listing 1) page tables including the virtual address of

__channel_save_clean are maintained in rich OS kernel, it could

be obtained by the attackers. For security reason, Ginseng hooks

all page table update operations and ensures the page tables are

read-only to rich OS kernel. Then, data of register x0 is stored to the
secure memory located at x4 (line 8). The data will be first written

to the cache of the secure memory __channel_save_clean. Since
the secure memory is set aswrite-back, write-allocate in the Ginseng
system, the data is buffered in cache and will only be evicted to

memory when the cache set is full. We leverage the cache lockdown

technique introduced in Section 4.3 to prevent the cache eviction,

i.e., we set the memory pages sharing the same page cache set with

the secure memory __channel_save_clean as outer non-cacheable.
Since some data is locked in advance in the cache lines mapping

to the secure memory __channel_save_clean, memory access in

step 1○ will encounter a cache hit and avoid the data fetching from

secure memory (i.e., step 2○). Then, no security violation will be

triggered, neither does the cross-world context switch. As such,

by invoking the writeSM function before ss_saveCleanV() is exe-

cuted, we can successfully bypass the context switching from IEEs

to the GService and the data protection conducted in GService. The

secure API function ss_exit() for cleaning the sensitive registers

at the end of each sensitive function could be attacked similarly.

5.3 TrustICE: Incomplete Cache Cleaning
In the following, we first illustrate data protection mechanisms in

TrustICE. Next, we point out that TrustICE suffers from Type III at-

tack due to incomplete cache cleaning during the context switching

processes. Then, we detail the attacking procedure.

5.3.1 Data Protection Mechanisms. TrustICE statically divides the

entire physical memory into three separated regions for the rich OS

in the normal world, the IEEs in the normal world, and a Trusted

Domain Controller (i.e., the IEE monitor in TrustICE) in the secure

world, respectively. Sensitive data protection is achieved by dynam-

ically configuring the security attribute of IEE memory. The IEE

memory is set as secure by the Trusted Domain Controller when

the system boots up. Before launching a new IEE, the Trusted Do-

main Controller allocates it a memory region from the IEE memory

and sets the memory region as non-secure. When the IEE finishes,

the micro kernel inside it transfers the control flow directly to the

secure world by invoking the SMC instruction. The Trusted Domain

Controller then configures the corresponding IEE memory region

as secure, before transferring the control back to the rich OS.

5.3.2 Type III Attack in TrustICE. Since TrustICE follows Model 2

to achieve data protection, it is immune to Type I attack. The IEE

memory is set as secure when the malicious OS is running and set

as non-secure when the security-sensitive application is executing.

The data protection during the "switch out" process is achieved by

dynamically setting the associated memory as secure. It cannot be

bypassed, since it is enforced in the secure world and the control

flow is transferred directly from micro kernel in IEE to the secure

world by invoking the SMC instruction. As such, the IEE system is

immune to Type II attack. However, although the IEE memory is

protected during the context switching processes, the correspond-

ing cache is non-secure and not cleaned correctly. Therefore, the

attackers could leverage Type III attack to compromise the security

of sensitive data.

5.3.3 Attacking Procedure. We implement a TrustICE prototype on

the i.MX6Quad SABRE development board. Since i.MX6Quad is a

multi-core platform, we suspend all the other cores when an IEE is

running. Particularly, before booting up an IEE, the Trusted Domain
Controller sends to the other non-secure cores (except the core

allocated to the IEE) an inter-core interrupt, which is configured

as a secure interrupt. The cores switch to the monitor mode when

receiving the secure interrupt, and thus the procedures running on

them are suspended.

Normal World Secure World

IEE Memory

Trusted Domain

Controller

(a) Manipulating IEE Cache when Untrusted Rich OS is Running

Access

Security-sensitive

Applications

(Suspended)

Untrusted

 Rich OS

(Running)

IEE Cache

Configure Memory as Secure
Access

Normal World Secure World

IEE

Memory

Trusted Domain

Controller

(b) Reading Polluted IEE Cache when Security-sensitive Applications are Running

Security-sensitive

Applications

(Running)

Untrusted

 Rich OS

(Suspended)

IEE

Cache

Access
Configure Memory as

Non-Secure

Protected by

Trusted Domain

Controller

Protected by

TrustZone TrustICE

 Procedure

Attack

Procedure

Access

Access

Figure 6: CITM Attack on TrustICE

The attacking procedure is as follows. As depicted in Figure 6(a),

we craft a page table entry in the normal world, where its physical

address is pointed to an IEE memory page (the address range of

IEE memory can be obtained as described in Section 5.1.3) and

its cache attributes are set as write-back, write-allocate. Although
the IEE memory page is configured as secure during the "switch

out" process, we can still access the sensitive data residing in the

corresponding cache lines that are non-secure, since TrustICE does

not clean the data in cache lines. During the "switch in" process, the

rich OS can write malicious data to the cache lines corresponding

to the IEE memory page and lock the data in cache lines using the

cache lockdown technique depicted in Section 4.3. Then, when the

IEE is executing, it will first read the malicious data residing in the

cache lines rather than the legal data in the IEE memory page, as

shown in Figure 6(b).

6 COUNTERMEASURE
Intuitively, the most straightforward defense strategy is completely

disabling the cache for all IEE memory. However, it is impractical

due to the huge performance overhead without using cache. Based

on the analysis of the root causes of CITM attacks, we propose to

prevent them by correctly configuring the cache attributes of IEE

memory and/or cleaning cache of the IEE memory during context

switching. Experiments show that our countermeasure has a small

overhead over both rich OS and the security-sensitive applications.

6.1 Defense Approaches
We observe that one main reason for all CITM attacks is the incoher-

ence between two levels of memory architecture, cache and main

memory. Thus, our defense focuses on removing those incoherences.

First, the memory isolation does not automatically guarantee the

cache isolation, and it is the root cause of Type I attack. Particu-

larly, when a memory region is isolated for a dedicated core via

the identity-based filtering feature of the TZC-400 in SANCTU-

ARY [14], the data of corresponding L1 cache may still be shared

among the cores. Thus, we can eliminate Type I attack by configur-

ing the cache attributes as outer non-cacheable, non-shareable (i.e.,
inner&outer non-shareable) for the core-isolated memory.

Second, the main reason for Type II attack is that the reading

and writing operations are not synchronized between memory and

cache. For instance, the cross-world switching in Ginseng [56] is

bypassed by constraining the reading and writing of the secure

memory in the cache. After preloading and locking malicious data

in the cache corresponding to the secure memory in advance, the fu-

ture reading of secure memory inside the IEE will hit the preloaded

malicious cache. We can defeat Type II attack through synchroniz-

ing the reading and writing operations between memory and cache.

Specifically, cache attributes of the IEE memory (e.g., the secure

memory in the Ginseng system) should always be configured as

write-through, non write-allocate. As such, the reading and writing

operations will not be constrained in the cache.

Third, the memory region is configured as secure or non-secure

through TZASC, but the security attribute of a cache line is deter-

mined by the status of the core who accesses it. In other words,

the cache lines are automatically identified as non-secure if being

accessed by a core running in the normal world, and identified

as secure if being accessed by a core running in the secure world.

This is the main reason for Type III attack. For example, the CITM

attack on TrustICE (see Section 5.3) is achieved by reading the IEE

memory’s non-secure cache after "switch out", and writing and

locking malicious data on the non-secure cache before "switch in".

We can defeat Type III attack by cleaning the cache lines during

both "switch in" and "switch out" processes, so that attackers could

not read residual sensitive data or retain malicious data in the cache.

In summary, the three CITM attacks identified in this paper

could be eliminated through (i) configuring the cache attributes

of the IEE memory as inner write-through non write-allocate, outer
non-cacheable, non-shareable and (ii) cleaning the cache of IEE mem-

ory during context switching. The approach to enforce the cache

attributes varies on different IEE systems. When the IEE memory’s

page tables are maintained in the IEEs (e.g., SANCTUARY [14]),

correct cache attributes could be enforced by the security-sensitive

applications running inside the IEEs. When the IEE memory’s page

tables are constructed in the secure world (e.g., TrustICE [55]), the

enforcement of the cache attributes could be achieved by the IEE

monitor. When the IEE memory’s page tables are maintained in the

malicious OS (e.g., Ginseng [56]), all page table update operations

of the malicious OS should be interposed and forwarded to the

IEE monitor, which then enforces the cache attributes are correctly

configured. Particularly, we block the direct manipulation from

malicious kernel by setting the IEE memory’s page tables and the

kernel-privileged codes as read-only to the kernel. Then, we replace

all instructions in the kernel codes for updating the page table en-

tries and the related registers, making them trap into the secure

world and undergo security checking (i.e., the cache attributes of

the critical memory are correctly configured) before being executed.

Finally, we configure the system to set the Privileged Execute Never
(PXN) attribute by default on any newly allocated pages, so that

no executable kernel-privileged instructions can be inserted when

the system is running. The cache cleaning could be achieved via

invoking the invalidation and cleaning instructions inside the IEE.

Particularly, we could directly clean the cache during the "switch

in" process by invoking the invalidation instruction. To prevent the

loss of data during the "switch out" process, we could first invoke

the cleaning instruction to synchronize data from cache to memory

and then invoke the invalidation instruction to clean the cache.

6.2 Defense Overhead
We implement a prototype of our countermeasure solution on the

i.MX6Quad SABRE development board, which is equipped with a

quad-core ARM Cortex-A9 processor running at 1.2GHz with 1GB

DDR3 SDRAM. Then, we evaluate the system overhead introduced

by our defense. To minimize the noise in the experiments, we run

each test with 1,000 iterations and report the average.

We first explore the overhead on security-sensitive applications

due to the enforced cache attributes. Particularly, we run an AES

encryption application in one IEE, and evaluate its execution time

when the memory is configured with different cache attributes.

The experimental results show that our defense system (i.e., with

the cache attributes set as non-shareable, inner write-through non
write-allocate, outer non-cacheable) introduces around 90% overhead

comparing to the default setting (i.e., with the cache attributes set

as shareable, inner write-back write-allocate, outer write-back write-
allocate), and it is mainly caused by disabling L2 cache. We also

observe that for the IEE systems that disable the L2 cache for protec-

tion (e.g., SANCTUARY), our defense system only introduces negli-

gible additional overhead. Also, we evaluate the overhead on the

rich OS introduced by the additional cross-domain context switches

enforced on each page table updating operation. The results show

that 2.65% overall overhead is introduced on the execution of rich

OS. In addition, we evaluate the overhead on the operations that

involves frequent page table updating, i.e., the system booting and

application loading. It shows the overall loading overhead for both

kernel and applications is less than 10% in all evaluation scenarios.

The evaluation details can be found in Appendix B.

7 DISCUSSION
Besides ARM TrustZone, the technologies such as Software Guard
Extensions (SGX) [45] and virtualization [10] have also been adopted
to construct IEEs for protecting the security-sensitive applications

against malicious OS. In this section, we show that SGX is immune

to CITM attacks by design, and the virtualization-based IEE systems

are more difficult to be attacked.

SGX-based Solutions. In the SGX-based solutions [13, 20, 24,

53], the IEEs (also called enclave in SGX) are constructed in the

user space of an untrusted OS. When an enclave is setup, a specific

memory region named enclave page cache (EPC) is allocated for it.

The sensitive data is only processed and stored in the EPC pages.

The SGX-based IEE solutions are immune to the CITM attacks

since the hardware-based security measures enforced on the EPC

pages. First, the EPC pages and corresponding cache lines are only

accessible when the processor is running in the enclave mode, i.e.,

when an enclave is being executed. Second, each physical EPC

page could be allocated to only one enclave, i.e., the EPC pages

allocated for any two enclaves are not overlapped [13]. The former

prevents the direct manipulation on the cache lines of the EPC

pages from malicious OS, and the later deters the indirect attacks

through manipulating the EPC pages’ cache lines from another

crafted enclave.

Virtualization-based Solutions. In the virtualization-based

IEE solutions [19, 22, 33, 34, 36, 41, 43, 44, 57], the hypervisor is as-

sumed to be secure and thememory ismanaged through a two-stage

address translation mechanism. The stage-1 translation translates a

virtual address (VA) to an intermediate physical address (IPA), and

the stage-2 translation translates the IPA further to a real physical

address (PA). The stage-2 translation is achieved in the hypervisor,

which usually provides well protection on the IEE memory by con-

trolling the IPA-to-PA page table mappings (e.g., ensuring separated

physical memory regions are allocated for the IEE and rich OS). Al-

though the attackers can manipulate the VA-to-IPA mappings, they

can hardly control the access to the real PAs without compromising

the hypervisor. Therefore, it is difficult to launch CITM attacks on

the virtualization-based IEE solutions, where the cache lines of the

IEE memory are indexed through real PAs.

Though the SGX and virtualization based solutions are more

secure against the CITM attacks, they have their own limitations.

First, the SGX technique is only available on the Intel platforms, but

most mobile devices are equipped with the ARM processors. Second,

the virtualization-based solutions rely on a trusted hypervisor in

the normal world as the reference monitor, which may also be

compromised [12, 16, 46]. In this paper, we focus on the TrustZone-

based IEE systems that rely on a small-sized IEE monitor in the

secure world to protect the security-sensitive applications against

untrusted OS and hypervisor in the normal world. The attacking

target of CITM is the IEEs running in the normal world, while the

secure world (e.g., the IEE monitor) is immune to CITM since the

associated cache is secure cache, which could not be manipulated in

the normal world. Also, CITM is ineffective when the system works

in the monitor mode (i.e., Execution Level 3), since the processor

will be automatically configured to execute in the secure mode by

hardware once it enters the monitor mode [4].

8 RELATEDWORK
There is a line of research works using ARM TrustZone exten-

sion [17] to protect security-sensitive resources against untrusted

OS. In general, they can be divided into two categories, i.e., protect-

ing the sensitive resources directly in the secureworld, or protecting

the sensitive resources in the normal world through a reference

monitor running in the secure world. Traditional Trusted Execution
Environment (TEE) systems usually follow the first implementa-

tion model, i.e., implementing the security-sensitive applications

as TAs in the secure world, including OP-TEE [48], Qualcomm’s
QSEE [29], Huawei’s Secure OS [35] and SAMSUNG’s KNOX [26] etc.

Research works such as TrustShadow [31], TrustOTP [54], TEEv [40],
PrOS [39], Trusted Language Runtime (TLR) [50], CaSE [59], Ko-
modo [27], SecTEE [61],MIPE [18] etc. also fall into the first category.
For example, Komodo [27] and SecTEE [61] implement a SGX-like

system in the secure world. PrOS [39] constructs multiple isolated

TEEs in the secure world. TrustOTP [54] provides trusted one-time

password functions in the secure world. Trusted Language Runtime
(TLR) [50] ensures the confidentiality and integrity of the .NET

mobile applications by deploying their code and security-sensitive

application components in the secure world. Since cache lines ac-

cessed in the secure world are secure, these systems are secure for

the CITM attacks. However, they increase the TCB by introducing

partial or entire execution codes into secure world.

There are two groups of solutions to protect the sensitive re-

sources in the normal world. The first group is the IEE systems

such as SANCTUARY [14], Ginseng [25] and TrustICE [55], which

are proposed to protect the third-party security-sensitive applica-

tions. As depicted in our paper, they are vulnerable to the CITM at-

tacks. The second group includes the solutions such as TZ-RKP [11],

SPROBES [28] and SeCReT [38] etc., which shield only certain spe-

cific data/codes rather than third-party applications. For example,

TZ-RKP [11] and SPROBES [28] focus on protecting the critical

kernel codes. SeCReT [38] constructs a secure cross-domain com-

munication channel with the help of TZ-RKP [11]. They achieve

the data protection through interposing the page table updating

operations and preventing the malicious OS from manipulating

the cache and memory associated with the sensitive data/codes.

Therefore, they are immune to the CITM attacks.

Besides ARM TrustZone, the virtualization technology has also

been widely adopted to protect the security-sensitive resources. So-

lutions such as OSP [22], PrivateZone [36], vTZ [34] and TFence [37]
target at the ARM platforms. The former three schemes focus on

constructing the IEEs, and TFence [37] utilizes the hypervisor to cre-
ate a secure cross-domain communication channel between applica-

tions and the TEE. The virtualization technology is also frequently

used to protect the security-sensitive data on the x86 platforms. For

example, Flicker [44], TrustVisor [43], InkTag [33] andMinibox [41]

protect the security-sensitive data in an IEE constructed through

hypervisor. Overshadow [19] protects the security-sensitive appli-

cations by illustrating different memory views for the applications

and malicious OS, respectively. CloudVisor [57] uses a similar idea

to protect virtual machines in the cloud platform. NICKLE [49]

achieves the real-time integrity protection of kernel codes. The In-
tel Software Guard Extensions (SGX) [45] technology has also been

adopted in many solutions to secure the security-sensitive applica-

tions [13, 20, 24, 53] on the Intel platforms. As discussed in Section

7, both hardware-assisted virtualization and SGX based solutions

are more secure against the CITM attacks.

Researchers also investigate on how the cache may be manip-

ulated in developing various cache-based attacks. For instance,

cache-based side-channel attacks have been developed on both

ARM platforms [21, 32, 42, 60] and Intel platforms [15, 30, 47, 51].

Also, CacheKit [58] can hide malicious codes in the normal world

and bypass the detection of both the secure and normal worlds

since the values of cache in two worlds can be different even they

are mapped to the same physical address. We focus on attacking

the IEE systems through the incoherence between cache and main

memory.

9 CONCLUSIONS
ARM TrustZone extension has been widely adopted in the IEE sys-

tems, which constructs a secure IEE in the normal world against

malicious OS. However, existing IEE systems focus more on pro-

tecting the memory, while the security of corresponding cache has

not been well studied. In the paper, we first summarize the data

protection measures enforced in the IEE systems into two generic

models. After performing a comprehensive investigation of the

cache features on the ARM platforms, we identify three Cache-

in-the-Middle (CITM) attacks which might compromise both data

protection models enforced in the IEE systems. To illustrate how

to exploit them on real hardware testbeds, we conduct three case

studies on three well-known IEE systems. After analyzing the pri-

mary reason for the CITM attacks (i.e., the incoherence between

memory and cache), we propose a defense scheme to defeat them.

The experimental results show that a small overhead is introduced

by our defense system.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Fengwei

Zhang for their insightful comments on improving our work. This

work is partially supported by U.S. ONR grants N00014-16-1-3214

and N00014-18-2893, NSF CNS-1815650, the National Natural Sci-

ence Foundation of China under GA No. 61802398, the National

Science and Technology Major Project of China under GA No.

2018ZX03001-010, the National Cryptography Development Fund

under Award No. MMJJ20180222 and MMJJ20170215.

REFERENCES
[1] Tiago Alves and Don Felton. 2004. TrustZone: Integrated hardware and software

security. ARM white paper 3, 4 (2004).
[2] Android. 2017. Trusty TEE | Android Open Source Project. https://source.android.

com/security/trusty/.

[3] ANTUTU. 2019. Aututu Benchmark. http://www.antutu.com/en/index.html.

[4] ARM. [n.d.]. ARMSecurity Technology Building a Secure System using TrustZone

Technology. https://static.docs.arm.com/genc009492/c/PRD29-GENC-009492C_

trustzone_security_whitepaper.pdf.

[5] ARM. 2014. ARM Architecture Reference Manual. https://static.docs.arm.com/

ddi0406/c/DDI0406C_C_arm_architecture_reference_manual.pdf.

[6] ARM. 2015. ARM CoreLink TZC-400 TrustZone Address Space Con-

troller. https://static.docs.arm.com/100325/0001/arm_corelink_tzc400_trustzone_

address_space_controller_trm_100325_0001_02_en.pdf.

[7] ARM. 2016. ARM Cortex-A53 MPCore Processor Technical Reference Manual.

https://developer.arm.com/docs/ddi0500/g.

[8] ARM. 2016. ARM Cortex-A9 Technical Reference Manual. http:

//infocenter.arm.com/help/topic/com.arm.doc.100511_0401_10_en/arm_

cortexa9_trm_100511_0401_10_en.pdf.

[9] ARM. 2016. Juno r2 ARM Development Platform Technical Reference

Manual. https://developer.arm.com/docs/ddi0515/f/juno-r2-arm-development-

platform-soc-technical-reference-manual.

[10] ARM. 2017. ARM virtualization. https://developer.arm.com/docs/100942/0100/

aarch64-virtualization.

[11] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad

Ganesh, and Jia Ma. 2014. Hypervision across worlds: Real-time kernel protection

from the arm trustzone secure world. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2014.

[12] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang, Xiaolan Zhang, and

Nathan C. Skalsky. 2010. HyperSentry: enabling stealthy in-context measurement

of hypervisor integrity. In ACM Conference on Computer and Communications
Security. 38–49.

[13] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications

from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS) 33, 3 (2015), 8.

[14] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and

Emmanuel Stapf. 2019. SANCTUARY: ARMing TrustZone with User-space

Enclaves.. In NDSS.
[15] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure:{SGX} cache
attacks are practical. In 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 17).

[16] Robert Buhren, Julian Vetter, and Jan Nordholz. 2016. The threat of virtualization:

Hypervisor-based rootkits on the ARM architecture. In International Conference
on Information and Communications Security. Springer, 376–391.

[17] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. SoK:

Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE

Systems. In Proceedings of the IEEE Symposium on Security and Privacy (S&P), San
Francisco, CA, USA. 18–20.

[18] Rui Chang, Liehui Jiang, Wenzhi Chen, Yang Xiang, Yuxia Cheng, and Abdul-

hameed Alelaiwi. 2017. MIPE: a practical memory integrity protection method

in a trusted execution environment. Cluster Computing 20, 2 (2017), 1075–1087.

[19] Xiaoxin Chen, Tal Garfinkel, E Christopher Lewis, Pratap Subrahmanyam, Carl A

Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan RK Ports. 2008. Overshadow:

a virtualization-based approach to retrofitting protection in commodity operating

systems. ACM SIGOPS Operating Systems Review 42, 2 (2008), 2–13.

[20] Yuxia Cheng, QingWu, BeiWang, andWenzhi Chen. 2017. Protecting In-memory

Data Cache with Secure Enclaves in Untrusted Cloud. In proceeding of Interna-
tional Symposium on Cyberspace Safety and Security.

[21] Haehyun Cho, Penghui Zhang, Donguk Kim, Jinbum Park, Choong-Hoon Lee,

Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. 2018. Prime+ count: Novel

cross-world covert channels on arm trustzone. In Proceedings of the 34th Annual
Computer Security Applications Conference. 441–452.

[22] Yeongpil Cho, Junbum Shin, Donghyun Kwon, MyungJoo Ham, Yuna Kim, and

Yunheung Paek. 2016. Hardware-assisted on-demand hypervisor activation

for efficient security critical code execution on mobile devices. In 2016 USENIX
Annual Technical Conference (USENIX ATC 16). 565–578.

[23] Dawei Chu, Yuewu Wang, Lingguang Lei, Yanchu Li, Jiwu Jing, and Kun Sun.

2019. OCRAM-Assisted Sensitive Data Protection on ARM-Based Platform. In

European Symposium on Research in Computer Security. Springer, 412–438.
[24] Victor Costan, lia A Lebedev, and Srinivas Devadas. 2016. Sanctum:Minimal Hard-

ware Extensions for Strong Software Isolation. In proceeding of usenix security
symposium.

[25] ECG. 2019. Source code of Ginseng. http://download.recg.org.

[26] Samsung Electronics. 2013. Samsung KNOX. http://www.samsung.com/global/

business/mobile/solution/security/samsung-knox.

[27] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.

Komodo: Using verification to disentangle secure-enclave hardware from soft-

ware. In Proceedings of the 26th Symposium on Operating Systems Principles.
287–305.

[28] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. 2014. SPROBES: Enforc-

ing kernel code integrity on the trustzone architecture. In in Proceedings of the
2014 Mobile Security Technologies (MoST) workshop.

[29] Google. 2012. QSEEComAPI.h. https://android.googlesource.com/platform/

hardware/qcom/keymaster/+/master/QSEEComAPI.h.

[30] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.

Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security. 1–6.

[31] Le Guan, Peng Liu, Xinyu Xing, Xinyang Ge, Shengzhi Zhang, Meng Yu, and

Trent Jaeger. 2017. TrustShadow: Secure execution of unmodified applications

with ARM trustzone. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services. ACM, 488–501.

[32] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam. 2016.

Cache storage channels: Alias-driven attacks and verified countermeasures. In

2016 IEEE Symposium on Security and Privacy (SP). IEEE, 38–55.
[33] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett

Witchel. 2013. InkTag: secure applications on an untrusted operating system. In

ASPLOS. 265–278.
[34] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu Zang, and Haibing Guan.

2017. vTZ: Virtualizing ARM TrustZone. In Proceeding of usenix security sympo-
sium.

[35] Huawei. 2017. Huawei SecureOS. http://developer.huawei.com/cn/consumer/

devunion/ui/server/SecureOS.html.

[36] Jinsoo Jang, Changho Choi, Jaehyuk Lee, Nohyun Kwak, Seongman Lee, Yeseul

Choi, and Brent Byunghoon Kang. 2016. Privatezone: Providing a private exe-

cution environment using arm trustzone. IEEE Transactions on Dependable and
Secure Computing 15, 5 (2016), 797–810.

[37] Jinsoo Jang and Brent Byunghoon Kang. 2018. Retrofitting the partially privi-

leged mode for TEE communication channel protection. IEEE Transactions on
Dependable and Secure Computing (2018).

[38] Jinsoo Jang, Sunjune Kong, Minsu Kim, Daegyeong Kim, and Brent Byunghoon

Kang. 2015. SeCReT: Secure Channel between Rich Execution Environment and

Trusted Execution Environment. In Proceeding of network and distributed system
security symposium(NDSS).

[39] Donghyun Kwon, Jiwon Seo, Yeongpil Cho, Byoungyoung Lee, and Yunheung

Paek. 2019. PrOS: Light-weight Privatized Secure OSes in ARM TrustZone. IEEE
Transactions on Mobile Computing (2019).

[40] Wenhao Li, Yubin Xia, Long Lu, Haibo Chen, and Binyu Zang. 2019. TEEv:

virtualizing trusted execution environments on mobile platforms. In Proceedings
of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments. 2–16.

[41] Yanlin Li, Jonathan McCune, James Newsome, Adrian Perrig, Brandon Baker,

and Will Drewry. 2014. Minibox: A two-way sandbox for x86 native code. In

2014 USENIX Annual Technical Conference (USENIX ATC 14). 409–420.
[42] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan

Mangard. 2016. Armageddon: Cache attacks on mobile devices. In 25th USENIX
Security Symposium (USENIX Security 16). 549–564.

[43] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Vir-

gil D. Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient TCB Reduction and

Attestation. In IEEE Symposium on Security and Privacy. 143–158.
[44] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi

Isozaki. 2008. Flicker: an execution infrastructure for tcb minimization. In EuroSys.
315–328.

[45] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,

Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions

and software model for isolated execution. HASP@ ISCA 10 (2013).

[46] Saeed Mirzamohammadi and Ardalan Amiri Sani. 2018. The Case for a

Virtualization-Based Trusted Execution Environment in Mobile Devices. In Pro-
ceedings of the 9th Asia-Pacific Workshop on Systems. 1–8.

[47] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:

How SGX amplifies the power of cache attacks. In International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 69–90.

[48] OP-TEE. 2018. optee-os. https://github.com/OP-TEE.

[49] Ryan Riley, Xuxian Jiang, and Dongyan Xu. 2008. Guest-transparent prevention

of kernel rootkits with vmm-basedmemory shadowing. In InternationalWorkshop
on Recent Advances in Intrusion Detection. Springer, 1–20.

[50] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. 2014. Using ARM

TrustZone to build a trusted language runtime for mobile applications. ACM
SIGARCH Computer Architecture News 42, 1 (2014), 67–80.

[51] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan

Mangard. 2017. Malware guard extension: Using SGX to conceal cache attacks. In

International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 3–24.

https://source.android.com/security/trusty/
https://source.android.com/security/trusty/
http://www.antutu.com/en/index.html
https://static.docs.arm.com/genc009492/c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://static.docs.arm.com/genc009492/c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://static.docs.arm.com/ddi0406/c/DDI0406C_C_arm_architecture_reference_manual.pdf
https://static.docs.arm.com/ddi0406/c/DDI0406C_C_arm_architecture_reference_manual.pdf
https://static.docs.arm.com/100325/0001/arm_corelink_tzc400_trustzone_address_space_controller_trm_100325_0001_02_en.pdf
https://static.docs.arm.com/100325/0001/arm_corelink_tzc400_trustzone_address_space_controller_trm_100325_0001_02_en.pdf
https://developer.arm.com/docs/ddi0500/g
http://infocenter.arm.com/help/topic/com.arm.doc.100511_0401_10_en/arm_cortexa9_trm_100511_0401_10_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100511_0401_10_en/arm_cortexa9_trm_100511_0401_10_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.100511_0401_10_en/arm_cortexa9_trm_100511_0401_10_en.pdf
https://developer.arm.com/docs/ddi0515/f/juno-r2-arm-development-platform-soc-technical-reference-manual
https://developer.arm.com/docs/ddi0515/f/juno-r2-arm-development-platform-soc-technical-reference-manual
https://developer.arm.com/docs/100942/0100/aarch64-virtualization
https://developer.arm.com/docs/100942/0100/aarch64-virtualization
 http://download.recg.org
http://www.samsung.com/global/business/mobile/solution/security/samsung-knox
http://www.samsung.com/global/business/mobile/solution/security/samsung-knox
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/QSEEComAPI.h
https://android.googlesource.com/platform/hardware/qcom/keymaster/+/master/QSEEComAPI.h
http://developer.huawei.com/cn/consumer/devunion/ui/server/SecureOS.html
http://developer.huawei.com/cn/consumer/devunion/ui/server/SecureOS.html
https://github.com/OP-TEE

[52] Andrew Sloss, Dominic Symes, and Chris Wright. 2004. ARM System Developer’s
Guide: Designing and Optimizing System Software. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA.

[53] Raoul Strackx and Frank Piessens. 2016. Ariadne: A Minimal Approach to State

Continuity. In Proceeding of usenix security symposium.

[54] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. 2015. TrustOTP: Transforming

Smartphones into Secure One-Time Password. In Proceeding of ACM computer
and communications security (CCS).

[55] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Haining Wang. 2015. TrustICE:

Hardware-Assisted Isolated Computing Environments on Mobile Devices. In Pro-
ceeding of IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN).

[56] Min Hong Yun and Lin Zhong. 2019. Ginseng: Keeping Secrets in Registers When

You Distrust the Operating System.. In NDSS.
[57] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. 2011. Cloudvisor:

retrofitting protection of virtual machines in multi-tenant cloud with nested

virtualization. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. 203–216.

[58] Ning Zhang, He Sun, Kun Sun, Wenjing Lou, and Y Thomas Hou. 2016. CacheKit:

Evading memory introspection using cache incoherence. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 337–352.

[59] Ning Zhang, Kun Sun, Wenjing Lou, and Y Thomas Hou. 2016. Case: Cache-

assisted secure execution on arm processors. In 2016 IEEE Symposium on Security
and Privacy (SP). IEEE, 72–90.

[60] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y Thomas Hou. 2016.

TruSpy: Cache Side-Channel Information Leakage from the Secure World on

ARM Devices. IACR Cryptology ePrint Archive 2016 (2016), 980.
[61] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng. 2019.

SecTEE: A Software-based Approach to Secure Enclave Architecture Using TEE.

In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security. 1723–1740.

A SHAREABILITY ATTRIBUTE ON ARM
PROCESSORS

We conduct a series of experiments to better understand the impacts

of the shareability attribute on the non-secure L1 data caches [5].

We conduct the experiments on the i.MX6Quad sabre development

board, which equips with a quad-core ARM Cortex-A9 processor

running at 1.2GHz and 1GB DDR3 SDRAM. Since the board has

only one cluster, the inner shareability domain is equal to the outer
shareability domain. In other words, the inner shareable has the
same effect as the outer shareable. Since the shareability attribute is

utilized to enforce value coherence when the same data is accessed

by multiple cores, we make all four cores access the same physical

memory (hereinafter referred to as test memory). We make all cores

run in the normal world, so that the L1 cache accessed by them

will all be non-secure. To eliminate the potential impacts on L1

cache introduced through L2 cache and memory, we disable the

L2 cache and set the test memory as secure memory. We opt to

set the test memory as secure rather than utilizing the memory

isolation scheme in SANCTUARY, since that scheme is only sim-

ulated through the ARM Fast Models virtualization tools and is

not achievable on the actual development boards. To prevent the

raising of external abort due to accessing secure memory from the

normal world, we set the test memory as write-back, write-allocate
and all other memory as non-cacheable. As such, the writing of test
memory will be buffered and locked in the L1 cache, and will not be

synchronized to memory. The test memory and the corresponding

L1 data cache are all initialized to zero.

Table 1: L1 Cache When Enabling Shareable Attribute

Shareability
Attribute

of the Cores

Value on the Core’s L1 Data Cache
After Writing
0xffff to Core_0

After Writing
0xdddd to Core_1

Core_0 (Shareable) 0xffff 0xdddd

Core_1 (Shareable) 0xffff 0xdddd

Core_2 (Shareable) 0xffff 0xdddd

Core_3 (Shareable) 0xffff 0xdddd

Table 2: L1 Cache When Disabling Shareable Attribute

Shareability
Attribute

of the Cores

Value on the Core’s L1 Data Cache
After Writing
0xffff to Core_0

After Writing
0xdddd to Core_1

Core_0 (Non-shareable) 0xffff 0xffff

Core_1 (Shareable) 0x0 0xdddd

Core_2 (Shareable) 0x0 0xdddd

Core_3 (Shareable) 0x0 0xdddd

We first investigate the impacts of data coherency when enabling

the shareability attribute. Specifically, we set the test memory as

shareable for all the four cores. Then, we store (i.e., write) 0xffff
to core_0’s L1 data cache mapping to test memory, and load (i.e.,

read) L1 data cache of each core addressed through test memory.
As illustrated in Table 1, value 0xffff on core_0’s L1 data cache is

synchronized to the other three cores. Thereafter, we store 0xdddd
to core_1’s L1 data cache, and find all cores’ L1 data caches are

synchronized again. It shows that the data on one core’s L1 data

cache could be leaked out to and manipulated by another core,

when the two cores run in the normal world and the corresponding

memory is set as shareable for both cores. Table 2 illustrates the

results obtained by disabling the shareability attribute. Particularly,

we modify the test memory’s cache attribute as non-shareable (i.e.,
inner&outer non-shareable) for core_0 and repeat the experiment.

It shows that data on the core’s L1 data cache could not be leaked

out to or manipulated by another core, when the corresponding

memory is set as non-shareable for that core.
To set different cache attributes for multiple cores when access-

ing the same physical memory region (i.e., the test memory), we
construct four page table entries, which map to the same physical

memory region and define different cache attributes for this phys-

ical memory region. After assigning one entry to each core, the

four cores can access the same memory region with different cache

attributes.

B EVALUATION OF THE DEFENSE SYSTEM
We evaluate the overhead introduced by our defense system based

on the prototype implemented on the i.MX6Quad SABRE develop-

ment board, which is equipped with a quad-core ARM Cortex-A9

processor running at 1.2GHz with 1GB DDR3 SDRAM. To minimize

the noise in the experiments, we run each test with 1,000 iterations

and report the average.

We first explore the overhead on security-sensitive applications

due to the enforced cache attributes. Particularly, we run an AES

encryption application in one IEE, and evaluate its execution time

when the memory is configured with different cache attributes. In

Table 3, the default configuration for most memory region is shown

in the second column, where S, WB, WA, With L1&L2 means setting

the cache attributes as shareable 2, inner write-back write-allocate,
outer write-back write-allocate. The attributes enforced by our de-

fense system are shown in the fourth column, where non-S, WT,
non-WA, Without L2 represents non-shareable, inner write-through
non write-allocate, outer non-cacheable. The cache attributes illus-
trated in the third column are similar to the ones in our defense

system, but with L2 cache enabled. The experimental results show

that our defense system introduces around 90% overhead compar-

ing to the default setting, and it is mainly caused by disabling L2

cache. We also observe that for the IEE systems that disable the L2

cache for protection (e.g., SANCTUARY), our defense system only

introduces negligible additional overhead.

Table 3: AES Encryption Time (in Milliseconds)

Payload
(Bytes)

S, WB, WA,
With L1&L2

non-S, WT, non-WA,
With L1&L2

non-S, WT, non-WA,
Without L2

1024 3.9 4.5 6.8

2048 7.5 8.8 13.4

4096 15.4 18.1 28.7

* "S,WB,WA,With L1&L2": shareable, inner write-back write-allocate, outer write-
back write-allocate;
"non-S,WT,non-WA,With L1&L2": non-shareable, inner write-through non write-
allocate, outer write-through non write-allocate;
"non-S,WT,non-WA,Without L2": non-shareable, inner write-through non write-
allocate, outer non-cacheable.

2
Since the i.MX6Quad board has only one cluster, shareable is equal to inner shareable
or outer shareable.

Then, we evaluate the overhead on the rich OS introduced by

the additional cross-domain context switches enforced on each

page table updating operation. We first study the overall overhead

through a comprehensive benchmark suite, i.e., AnTuTu 2.9.4 [3].

It measures the performance in integer computation, float point

operation, 2D and 3D graphic rendering etc. The results are illus-

trated in Table 4, which shows 2.65% overall overhead is introduced

on the execution of rich OS. The primary reason for the 17.74%

overhead on the Database I/O operations is the need of building

a mass of page table mappings when copying data from the disk to

the memory.

Table 4: Benchmark Results on Rich OS

Test Item Protection
Disabled

Protection
Enabled Overhead

RAM 486 475 2.26%

CPU Integer 698 692 0.86%

CPU Float-point 567 564 0.53%

2D Graphics 282 281 0.35%

3D Graphics 861 852 1.05%

Database I/O 310 255 17.74%

SD Card Write 38 36 5.26%

SD Card Read 186 182 2.15%

Total 3428 3337 2.65%

We also evaluate the overhead on the operations that involves

frequent page table updating, i.e., the system booting and applica-

tion loading. As illustrated in Table 5, the test item Kernel records

the loading time from the hardware booting to the starting of the

init process. Android Home refers to the initialization time of the

Android Launcher process. We also test the loading time of four

Android applications, including Calculator, Calendar, Music and
Settings. Overall, the loading overhead for both kernel and appli-

cations is less than 10% in all evaluation scenarios.

Table 5: Loading Time Results on Rich OS (in Seconds)

Test Item Protection
Disabled

Protection
Enabled Overhead

Kernel 22.26 23.71 6.51%

Android Home 87.42 89.81 2.73%

Calculator 3.01 3.22 6.98%

Calendar 3.14 3.34 6.37%

Music 1.26 1.37 8.73%

Settings 3.77 3.95 4.77%

	Abstract
	1 Introduction
	2 Background
	2.1 ARM TrustZone
	2.2 ARM Cache Architecture
	2.3 IEE Systems

	3 Threat Model
	4 CITM Attacks
	4.1 IEE Data Protection
	4.2 CITM Attack Types
	4.3 Cache Lockdown Technique

	5 Case Study of CITM Attacks
	5.1 SANCTUARY: Manipulating L1 Cache
	5.2 Ginseng: Mapping to Non-Secure Cache
	5.3 TrustICE: Incomplete Cache Cleaning

	6 Countermeasure
	6.1 Defense Approaches
	6.2 Defense Overhead

	7 Discussion
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Shareability Attribute on ARM Processors
	B Evaluation of the Defense System

